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* Our models cannot predict the future perfectly.
— $0 we optimize them to push the prediction error down as far as we can go.
— Better models, hopefully, lead to smaller errors.

* building a model for the uncertainty part of the problem (the area of the
iceberg) we cannot see.

— Quantifying the uncertainty will allow us to amend the point predictions (= best guesses)
with deviation estimates and, ultimately, will lead to better and more robust models




Why Probabilistic forecasts?

Deterministc forecast: Specifies a point estimate of a predictand.
— Forces the forecaster to suppress information on uncertainty.
— Creates an illusion of certainty in users mind.
— Leading to suboptimal action
— Wrong forecasts can cause economic losses

Probabilistic forecast: specifies a probability distribution function(pdf)
of predictand.

Probabilistic forecasts decouple
— Forecasting : which might involve principles of Science
— Decision making: which involve decision maker’s evaluation of consequences of
alternative actions and events
Probabilistic predictions, unify point prediction and uncertainty
modeling in one consistent framework.

Using probabilistic prediction models we can calculate best-guess
predictions and derive the “safety buffers” that, together, result in
well informed decisions m
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There are four potential benefits:

Probabilistic forecasts are scientifically honest since they allow the forecaster to admit
the uncertainty and express the degree of certainty/uncertainty

Enable an authority to set risk-based monitoring and warning and emergenct response.

They apprise the user of uncertainty (necessary evil) for making rational
decision, enabling the user to take risk into account.

Potential for economic benefits
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NCMRWF Ensemble Forecasting

equally likely.

Ensembles

Deterministic
forecast

Initial condition
uncertainty

System (NEPS)

e What is an ensemble forecast?

— Instead of running just a single forecast, the computer model is run a
number of times from slightly different starting conditions. The complete
set of forecasts is referred to as the ensemble, and individual forecasts
within it as ensemble members.

— Ensemble forecast systems are designed so that each member should be
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Wind Speed m/s
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Ensemble Prediction System
Ensemble Members forecast at 6 hour interval
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NEPS Day—1 Fcst Based on IC= 20210112 NEPS Day—2 Fecst Based on IC= 20210111
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NEPS Day—1 Fcst Based on IC= 20210113 NEPS Day—2 Fcst Based on IC= 20210112
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Bias Correction in NEPS Tmax
Mean Error in Tmax (Day-3) Mar 2019

Fy.(t) = F(t) — Bias(t)

(b) Fest

BIAS(t)=(1-w) xb(t-1)+ B

1
B =31 (Fi- 0;)

* adaptive [Kalman filter type (KF)]
algorithm to accumulate the decaying
averaging bias

(e) BC-Obs * This method allows the incorporation
of the most recent behaviour of the
system into the estimation of the bias
[Cui et al., 2012; Glahn, 2012]
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28t Apr-4th May  Western & Central India

IMD OBS & NEPS TXBC PROBABILITY FCST VALID for 20190428

Day-3 Day-5

IMD-OBS Day-1

Tmax >43 over large
area of western and
central India

Forecast probability >
65% and 95%

Tmax >46 over central
peninsula

Forecast probability >
35%




9-11t May N India and Eastern
IMD OBS & NEPS TXBC PROBABILITY FCST VALID for 20190509
IMD-OBS Day-1 Day-3 Day-5

Tmax >43 over
Northern and eastern
India

Forecast probability >
65% and 95%

ILITY FEES' GALiD for 20190511

Day-3

Tmax >43 reduced
over Northern India
Limited to eastern
India

Forecast probability >
65% and 95%
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Extreme Forecast Index (EFI =

= At the ECMWEF, one tool that condenses the forecast information from the
Integrated Forecasting System ensemble (ENS) is the extreme forecast index (EFI)

= EFlis an index that highlights regions that are forecast to have potentially
anomalous weather conditions

Calculating the Extreme Forecast Index (EFI)

The Extreme Forecast Index is calculated according to the formula:

2 r1p—Fr(p)
EFI == | ———d
frfo p—p)

where Ff(p) denotes the proportion of EPS (ensemble prediction system) members lying below the p quantile of the M-climate

climate record. The EFl is computed for many weather parameters, for different forecast ranges and accumulation

M-climate
periods.

Positive EFI Negative EF

. EFI=0:

—  The probability distribution agrees with the M-climate distribution.
. If the probability distribution (mean, spread and asymmetry) does not agree with the

climate probability distribution, the EFI takes non-zero values.

. EFI=+1:

— all the members forecast values above the absolute maximum in the M-climate,
. EFl =-1:

— all forecast values below the absolute minimum in the M-climate



9-11th May N India and Eastern

IMD OBS & NEPS TXBC PROBABILITY FCST VALID for 20190509

IMD-OBS Day-1 Day-3 Day-5

Tmax >43 over
Northern and

" |eastern India

Forecast

probability > 65%

and 95%




NCMRWF Forecast 10m and 925 hPa
WS over S India

Analysis, Raw and Bias Corrected Forecasts

v
por N

4’0 ﬂixﬂq



Wind Speed

Comparison of Model Fcst: Raw & BC with Analysis 10m
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16N 168

Two Wind"
Farm sites i
AP 1N

FC—AN
16M 16N

15"4 R |m.. R

144 14N

13M 4 13N 4

M T TR 7o o0 Tee T 78 T B0E
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Wind Speed

Comparison of Model Fcst: Raw & BC with Analysis 925 hPa

AN FC BC
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Impact of BC : Reduced MAE in the 10m (L) & 925 hPa (R) Wind Speed

1.4

B Raw mEBC

1.2 -

Mean Absolute Error

6 12 18 24

*MEA Reduction by-
*65%, 44% and 66% in 12h, 18h and 24h
forecasts

Mean Absolute Error

3

2.5 -

6 12 18 24

*MEA Reduction by-
*75%, 79% and 79% in 12h, 18h and 24h
forecasts
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Forecast on a Typical day
(South India : AP)

Forecast Based on 30th June 2017
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PQPF for Different FMOs

Based on NEPS
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Ensemble Forecast Product for Flood Advisory 1

Rainfall forecast from NCMRWF Ensemble Prediction System
23 members (22 + 1 Control)

4D Var Hybrid Data Assimilation System

12 km x 12 km Grid with global coverage (spatial resolution)
High temporal resolution for specific applications

Forecast lead time: 10 days



Methodology: Rainfall probability for a river sub-basins is calculated using
neighborhood post processing

All rainy grid points from all the ensemble members falling inside a sub-basin
is considered in probability calculation

Rainfall threshold (mm) 0.1-10, 10-25, 25-50, 50-100 and > 100
Probability band 0-5, 5-25, 25-50, 50-75 and 75-100
13 FMOs

Presented in Graphical Format and shared with IMD

(http://hydro.imd.gov.in/hydrometweb/(S(a53rg3vchakjvx55nedd33zw))/PRODUCTS/QPF/neps 00.ht
ml)



http://hydro.imd.gov.in/hydrometweb/(S(a53rq3vchakjvx55nedd33zw))/PRODUCTS/QPF/neps_00.html
http://hydro.imd.gov.in/hydrometweb/(S(a53rq3vchakjvx55nedd33zw))/PRODUCTS/QPF/neps_00.html

Probabilistic Forecasts of High Impact/Extreme

Rainfall Events

PQPF at River-Sub basins level

PQPF at district level
Day-3 NEPS PQPF over FMO_P.otno
—— 1C:20190925 Day-5 Forecast Valid for 00Z30SEP2019
:::(f'::(:::‘rz) 64 I'(ISZVSVCI:I/I;W) (a) Prob. of 0.1=10 mm/day (b) Prob. of 10~25 mm/day (c) Prob. of 25=50 mm/day
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Verification of PQPF over River Basins during ﬁ*ﬂ"""""“‘ﬂu

ot 00
NEPS PQPF over FMO_Guwahati JJA%&% 40 ~ Brah tra 2t Guwahati <
1:20200624 Day-3 Forecast Valid for 00Z27JUN2020 St iveY 35 rahmaputra at Guwanhati
. -
(a) Prob. of 0.1=10 mm/doy (b) Prob. of 10-25 mm/day (c) Prob. of 25-50 mm/day Ra ] nfa“ . 30 -
:E 25
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(d) Prob. of 50-100 mm/day (e) Prob. of >100 mm/day Sub-basin Doy-3 PQPF (%) for five categories
names (a) (0) () (d) (e)
PR 2545 NEPS PQPF over FMO_Guwahati
(v o o G e 1C:20200622 Day—5 Forecast Valid for 00Z27JUN2020
{4)Brahmaputra_at_Dibrugarh 2 16 28 21 34
(5)Brahmoputra_at_Goalpara
Sleromapuro oL Seopera R () Prob. of 0.1=10 mm/day (b) Prob. of 10-25 mm/day (¢) Prob. of 25-50 mm/day
( at { 33 46 14 5 1
(8)Brahmoputra_ot_Tezpur 36 23 149 18
(9)Buridihing_at_Khowang 26 46 20 B 2
(10)Dehung_at_Passighat 0 5 32 41 2
(11)Dhansiri_at_Golaghat 97 2 1 0 0
{12)Dhansiri_at Rly_Bridge 4 9 13 21 54
{13)Gumti 8 11 3 1 0
{14)Jiobharali ot NT_road Xing 10 28 26 17 18
{15)Kapili_at_Kempur 7712 6 4 1
{18)Lohit_at_Dhalla 3 18 19 29 32
(17)Manas_Beki_at NH_Xing 0 1 1 4 94
(18)Manu 9% 1 0 0 0
(19)Sankosh 11 1 8 89
iri_ot_Badatighat 1 18 44 21 16
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*Accounting for displacement errors in rainfall T —
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Verification of PQPF over River Basins during LR
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Review on probabilistic forecasting of wind power generation @Cmsm

Yao Zhang, Jianxue Wang *, Xifan Wang

School of Electrical Engineering, Xian Jiaotong University, Xi'an 710049, PR China

ABSTRACT

The randomness and intermittence of wind resources is the biggest challenge in the integration of win
power into the power system. Accurate forecasting of wind power generation is an efficient tool to dea
with such problem. Conventional wind power forecasting produces a value, or the conditiona
expectation of wind power output at a time point in the future. However, any prediction involve
inherent uncertainty. In recent years, several probabilistic forecasting approaches have been reported i
wind power forecasting studies. Compared to currently wide-used point forecasts, probabilistic forecast

generation. For decision-makings in the uncertainty environment, probabilistic forecasts are optimal
inputs. A review of state-of-the-art methods and new developments in wind power probabilistic
forecasting is presented in this paper. Firstly, three different representations of wind power uncertainty
are briefly introduced. Then, different forecasting methods are discussed. These methods are classified
into three categories in terms of uncertainty representation, ie. probabilistic forecasts (parametric
and non-parametric), risk index forecasts and space-time scenario forecasts. Finally, requirements and
the overall framework of the uncertainty forecasting evaluation are summarized. In addition, this article
also describes current challenges and future developments associated with wind power probabilistic
prediction.

9. Discussion

With the rapid development of the uncertainty forecasting
method, the application of uncertainty forecasting in power
system engineering might happen in the future. Today, forecasts
end-users may still prefer to get wind power single-value forecasts
because point forecasts are more easily to be understood and

LIt | . . ;
and is hard to verify. Nowadays, probabilistic information coming
from uncertainty forecasts is still difficult to be appreciated by
users. However, after integrating more and more stochastic power
generation in power system, traditional point forecasts cannot
satisfy the requirement of uncertainty information in decision-
making problems. Therefore, methodologies of wind power fore-
casts should be developed in the probabilistic framework. The
development of uncertainty forecasting would be of great benefit
to increase the penetration of wind power generation. However,
the study on wind power uncertainty forecasting is still in the

_early stage Much problem and challenge still exists in this field
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HYSPLIT SREF Dispersion Forecast

EXPERIMENTAL - information may not be current.

Over the past few years, the use of dispersion model ensembles has been an increasingly attractive approach to predict atmospheric transport. The
ensembles are generally constructed by combining multiple numerical weather prediction simulations or output from different dispersion models, by introducing
variations In a particular model's physics parameterizations, or by different combinations of these variations. In addition, the source term and height distribution
can be varied to create dispersion ensembles.

For this application, we create a HYSPLIT ensemble simulation using the 26 meteorological model members from the National Weather Service (NWS)
operational Sort Range Ensemble Forecast (SREF). The HYSPLIT model runs are generated by using the Transfer Coefficient Matrix procedure that is

updated with the most recent meteorological data at 03, 09, 15 and 21Z. .EM FOR ENSEMBLE DISPERSION FORECAST IN CASE OF
The figures below show each of the simulation ensemble members as well as a series of statistical measures that describe the ensemble properties such as: NIT CLE AR EN[ER GE N C IE s

S. Galmarini*, R. Bianconi**, R. Bellasio™*, W. Klug***
(*) REMVIES, Joint Research Centre, European Commission, Ispra, Italy

(**) ENVIROWARE s.r.1., C. Dir. Colleoni, Plzo Andromeda 1, Agrate Brianza, Italy
(***) Mittermayerweg 2, D 64289 Darmstadt, Germany
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Potential Use of Transport and Dispersion Model Ensembles for Forecasting
Applications _ - T e
Ensemble dispersion forecasting—Part I: concept,
261 Srem approach and indicators
NOAA/Air Resources Laboratory, College Park, Maryland
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NOAA/Air Resources Laboratory, and Cooperative Institute for Climate and Satellites, College Park, Maryland
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NOAA/Air Resources Laboratory, College Park, Maryland
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(Manuscript received 14 November 2014, in final form 10 March 2015) . . . .
Improving SCIPUFF Dispersion Forecasts with NWP Ensembles

JARED A. LEE

Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
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Data can be imperfect, incomplete, or uncertain. There is often more than one
explanation for why things happened the way they did; and by examining those
alternative explanations using probability.

However, thinking probabilistically takes some getting used to, as the human
mind is naturally deterministic. We generally believe that something is true or
false. Either you like someone or you don’t.

For make good decisions in complex, unpredictable environments one of the
best ways to embrace uncertainty and be more probabilistic in approach is to
learn to think like a professional gambler.

Developing a probabilistic mindset allows you to be better prepared for the
uncertainties and complexities of the Algorithmic Age. Even when events are
determined by an infinitely complex set of factors, probabilistic thinking can help
us identify the most likely outcomes and the best decisions to make.

Probabilistic Predictions

Embracing the uncertainty for better decision-making

?’ Julian Wergieluk Jun 20,2020 - 10 minread *

https://towardsdatascience.com/probabilistic-predictions-



