Data Processing and Visualisation of
NOAA and MetOp Satellite Data

Srinivas Desamsetti, C. J. Johny, M. Sateesh,
M. N. R. Sreevathsa and V. S. Prasad

July 2020

Data Processing and Visualisation of
NOAA and MetOp Satellite Data

Srinivas Desamsetti, C. J. Johny, M. Sateesh,
M. N. R. Sreevathsa and V. S. Prasad

July 2020

National Centre for Medium Range Weather Forecasting
Ministry of Earth Sciences
A-50, Sector 62, Noida-201 309, INDIA

1

Ministry of Earth Sciences

National Centre for Medium Range Weather Forecasting

Document Control Data Sheet

1 Name of the Institute National Centre for Medium Range Weather Forecasting

2 Document Number NMRF/TR/08/2020

3 Date of publication July, 2020

. Data Processing and Visualisation of NOAA and MetO

4 Title of the document . J P
Satellite Data

5 Type of Document Technical Report

No. of Pages, Figures i

44 pages, 2 Tables, 12 Figures, 9 Annexures.

6 and Tables Pag g

7 Number of References | 7
Srinivas Desamsetti, C.J. Johny, M. Sateesh, M. N. R.

Author (S ’ ’ ’

8) Sreevathsa and V. S. Prasad

9 Originating Unit NCMRWF
NCMRWEF receives level-0 data from the low earth orbit satellites
in near real time from INCOIS and level-1b data from other Direct
Broadcast Networks of WMO. The level-0 mainly consists of data
from NOAA and MetOp series of satellites. An automated data
processing chain (ADPC) to process this level-0 data using AAPP,
and MetOpizer software tools has been established at NCMRWEF. It
has capability to generate level-1b, level-1c and level-1d data from

10 | Abstract AVHRR, AMSU-A, MHS, HIRS and IASI sensors which are
onboard of above-mentioned satellites. The three sensors i.e.,
AMSU-A, MHS and HIRS together form the ATOVS. The ADPC
provides data products for use in the data assimilation systems of
NWP models at NCMRWEF; and for generating geospatial imageries
of AVHRR, AMSU-A and MHS for forecasters at IMD. This report
describes the various software tools used to make this ADPC and
subsequent geospatial visualization.

11 | Security classification | Non-Secure

12 | Distribution Unrestricted Distribution

13 | Keywords Decoding, monitoring, NOAA, MetOp, AAPP, visualization

Table of Contents

R (011 0o 0 Tod o] o ISP 4
A B L | - TP TSP PR OPRTUPPOPRRPI 4
3 IMENOUOIOGY ...t 5
3.1 A AP e 5
3.2 IMIBEOPIZET . bbb 8
4 DA PrOCESSINGveiieiieiieeete ettt bbbttt ettt b bbbt e bbb b e 8
4.1 NOAA HRPT DAL ..coeiiiieieiiieieiee ettt st a s b e e ase e 9
4.2 MetOP AHRPT Dala......cccoeiiiirieieieiiiieeses ettt st ane e 9
5 Data ViSUBHZATION ..ottt bbb nneas 10
R DT L WY (o]0 (o [o SRS 11
T ACKNOWIEAGEMENTS ...ttt ettt te e s e e ste e reenraenre s 12
8 RETEIENCES ...ttt nb et nneas 12
LS [1V =TSSR 13
10 ANNEXURES ..ottt sttt b et ne bt 22
Annexure-1: submit_hrpt ProCess.Sh........covcii e 22
Annexure-11: noaa_hrpt_ProCess.Shciveiiiie i 23
Annexure-111: metop_hrpt_ProCeSS.SNcoiiiiiiiiiiee e 26
ANNeXure-1V: run_11h PIOt.Sh......ooiiee e 31
ANNEXUIE-V: TUN_I1C PIOL.SN 1 33
Annexure-VI: plot_Nrpt 110 MaS.pYcveiiiiiiiiiece e 36
Annexure—VI1I: aapplc_qUICKIOOK.PYcoviiiiiiiiiiiiiiieee e 38
Annexure—VIII: run_plot_time_delaysS.Shccoveeiieeieseee e 42
ANNEXUIE—DX: PIL_EIAY.T . 44

Abstract

NCMRWF receives level-0 data from the low earth orbit satellites in near real time from INCOIS and level-
1b data from other Direct Broadcast Networks of WMO. The level-0 mainly consists of data from NOAA and
MetOp series of satellites. An automated data processing chain (ADPC) to process this level-0 data using
AAPP, and MetOpizer software tools has been established at NCMRWEF-. It has capability to generate level-
1b, level-1c and level-1d data from AVHRR, AMSU-A, MHS, HIRS and IASI sensors which are onboard of
above-mentioned satellites. The three sensors i.e., AMSU-A, MHS and HIRS together form the ATOVS. The
ADPC provides data products for use in the data assimilation systems of NWP models at NCMRWF; and for
generating geospatial imageries of AVHRR, AMSU-A and MHS for forecasters at IMD. This report
describes the various software tools used to make this ADPC and subsequent geospatial visualization.

1. Introduction

The real time data acquisition (whether satellite or ground based observation systems) for
operational numerical weather prediction (NWP) centres is very crucial to monitor the atmospheric
phenomena and to create initial conditions for the NWP models. The Direct Broadcast Network
(DBNet) project was proposed by World Meteorological Organization (WMO), with an aim to
provide near real-time access to the data from low earth orbit (LEO) satellites globally or
regionally®. Most of the LEO meteorological satellites have the capability of direct broadcast, and a
network of ground stations are established to receive the direct broadcast data stream. Each local
ground station within the network receives data in real-time, but the coverage is limited to portion
of orbit within the area of visibility of the local station (WMO, 2017).

In India, the Indian National Centre for Ocean Information Services (INCOIS, Hyderabad) has
setup a ground station to receive the direct broadcast data from National Oceanic and Atmospheric
Administration (NOAA)-15, NOAA-18, NOAA-19, MetOp-A and MetOp-B satellites. A regional
processing centre is responsible for monitoring the reception of datasets from LEO satellites and the
performance of DBNet of their region, particularly data relay, timelines. National Centre for
Medium Range Weather Forecasting (NCMRWF), receives these satellite datasets in raw format
(level-0) from INCOIS. These datasets are processed to level-1c or level-1d and being used for
generating the spatial maps and used as observations in data assimilation (DA) system. This report
briefly describes the dataset details in Section 2, methodology in Section 3, data processing in
Section 4, data visualization in Section 5 and data monitoring in Section 6.

2. Data

The ground station at INCOIS receives the data from NOAA and MetOp satellites in high-
resolution picture transmission (HRPT) and advanced high-resolution picture transmission
(AHRPT) formats, respectively. The latter format is from the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT).

1 https://community.wmo.int/activity-areas/wmo-space-programme-wsp/dbnet

https://community.wmo.int/activity-areas/wmo-space-programme-wsp/dbnet

These satellites cover India and neighbouring regions twice (two swaths) a day during
ascending and descending orbits. The onboard sensors are: Advanced Very High-Resolution
Radiometer/3 (AVHRR/3; for brevity referred as AVHRR from hereon), Advanced Microwave
Sounding Unit-A (AMSU-A), Microwave Humidity Sounder (MHS) and High-Resolution Infrared
Radiation Sounder/4 (HIRS/4; for brevity referred as HIRS from hereon). The three sensors i.e.,
AMSU-A, MHS and HIRS together form the Advanced TIROS (Television Infrared Observation
Satellite) Operational Vertical Sounder (ATOVS). Presently, MHS sensor is not operational on
NOAA-15 and NOAA-18. The processed data is used in the various DA systems at NCMRWF.

NCMRWEF also receives data in AHRPT (EUMETSAT, 2019) format from MetOp-A and
MetOp-B satellites and the onboard sensors are: AVHRR, AMSU-A, HIRS, IASI and MHS.
AHRPT data is disseminated in L-band (Primary frequency at 1701.3 MHz, and a backup frequency
of 1707.0 MHz) with data rate of 3.5 Mbps with local coverage radius up to 1500 km centring the
receiving station. This data is distributed as a stream containing Channel Access Data Units
(CADU) and require further processing to generate MetOp level-0 products. The stream holds
multiplexed data from all MetOp instruments and spacecraft telemetry and administrative messages.
Along with time ordered, frame synched and randomized, CADU’s also hold Reed-Solomon error-
correction decoding information and quality information. A CADU packet can be processed further
up to Coded Virtual Channel Data Unit (CVCDU), Virtual Channel Data Unit (VCDU), MetOpizer
Product Dissemination Units (M-PDU) and Instrument Source Packets as Consultative Committee
for Space Data Systems (CCSDS) source packets. The details of MetOp data processing is given in
Section 4.

3. Methodology

This section briefly describes the processing, visualizing, and monitoring of HRPT data from
NOAA and AHRPT from MetOp satellites at NCMRWF. Two software programmes from
EUMETSAT have been adopted for processing the data. They are: AAPP ((Atkinson, 2017);
(Atkinson, 2020) & (Atkinson, 2019)) and MetOpizer (EUMETSAT, 2015). A brief description of
these software are given below.

3.1 AAPP

The ATOVS and AVHRR Pre-processing Package (AAPP) developed and maintained by
EUMETSAT’s Satellite Application Facility for Numerical Weather Prediction (NWP SAF) since
late 1990s. AAPP has been used for processing the direct readout data from NOAA-15 and its
successors. AAPP has been upgraded after adding MetOp in 2006, Suomi-NPP in 2012 etc. AAPP
mainly process the data from polar-orbiting satellites like NOAA series. AAPP has many tools to
process the data at level-O and level-1 i.e. generates the basic radiometric quantities such as
brightness temperatures acquired along the satellite swath. AAPP also generates the cloud mask and
sea surface temperature but does not retrieve the atmospheric temperature/humidity.

AAPP can handle various satellite sensors and has the capability to generate various data

products at different processing levels. This is summarized in Table 1.

Table 1: Summary of AAPP capabilities

Sl. No. | Satellite/Platform Sensors Functionalities & Remarks

HIRS

1 TIROS-N MSU

AVHRR/2

HIRS/3 Decommutation of the instrument
data from the HRPT data frame

AMSU-A !Extractiqn of the calibration
information

2 NOAA-KLM

AMSU-B Navigation of the data
Calibration of the data

AVHRR/3 Pre-processing of the data (cloud
mask included)

HIRS/4 Mapping of the data of the sounder
instruments on a common

AMSU-A instrument grid (HIRS, AMSU,

3 NOAA-NN’ MHS or IASI)

MHS Deriving a set of statistical
parameters from the AVHRR data
in the HIRS FOVs

AVHRR/3
For MetOp, AAPP ingests “EPS

HIRS/4 Level 0” files (one file per
instrument), then performs

AMSU-A navigation, calibration and pre-
processing as above.

MHS In the case of IASI, level 1

4 MetOp processing is performed by the
OPS-LRS (Operational Software —

AVHRR/3 Local Reception Station), which is
an optional extension to AAPP and
is based on the OPS software

IASI provided to EUMETSAT by
CNES.

ATMS e For NPP, the starting points for
AAPP are Sensor Data Record files
(SDR). For direct readout, you will
5 NPP CrlIS need an external program, such as
University of Wisconsin’s CSPP
package, or NASA’s [POPP
package, to generate the SDR files.

) e The above same applies to FY-3,
MWTS and MWTS-2 for which the China Meteorological

Administration provide a

VIIRS

MWHS and MWHS-2 processing package for direct
6 FY3 readout use.

IRAS

MWRI

In terms of processing levels, AAPP defines the following data processing convention:

a) Raw data: Data as transmitted by the spacecraft, usually in sensor digital counts.

b) Level-0: Pre-processing steps like frame synchronisation have been performed on the raw
data; in the case of MetOp, data from each instrument/sensor are separated into different
files.

c) Level-1a: Raw counts of each instrument/sensor in separate file.

d) Level-1b: Geo-referenced and calibrated data (reversible: calibration coefficients are
separated from raw data).

e) Level-1c: Geo-referenced and calibrated brightness temperatures and albedo (non-
reversible: calibration coefficients are applied to numerical data). In the case of 1ASI, the
spectra are apodized. In the case of microwave sounders, an antenna pattern correction will
usually have been applied. This is the first geophysical product level.

f) Level-1d: Mapped and filtered data. Several instruments may be mapped to a common
instrument grid. A cloud mask, or other derived products, may be included.

AAPP needs orbital elements for navigation. The bulletins provide the satellite position and
velocity at any given time hence the software predicts the future positions. Often two-line elements
(TLE) are used and being downloaded at NCMRWF at 6-hour interval. Alternatively, TLE data
from NOAA and MetOp satellites from the MetOp Multi Mission Administration Message
(MMAM) and can be obtained from HKTM file or downloaded from EUMETSAT. More details of
data processing are provided in Atkinson, 2020. At NCMRWF AAPP version 8.5 has been installed
on MIHIR High Performance Computing System (HPCS) to process the data as described by
(Atkinson, 2019).

3.2 MetOpizer

The MetOpizer is a software toolkit from EUMETSAT to handle raw AHRPT data from MetOp
satellites. MetOpizer is collection of programs as modules to perform different tasks on input data.
There are many executables (modules) available in MetOpizer. More details of MetOpizer are given
in (EUMETSAT, 2015). At NCMRWF, MetOpizer, version 3.51.1 has been installed on the MIHIR
HPCS. Some of the MetOpizer functionalities are summarized in Table 2.

Table 2: Functionalities of MetOpizer

SI. No Module name Purpose

For converting NOAA L1b format AMSU-A product
into a stream of CCSDS packets, or a series of images.

For converting NOAA L1b format AMSU-B product
2 amsub_to_mhs_ccsds into a stream of MHS format CCSDS packets, or to a
series of images.

For converting NOAA AVHRR Level 1b file in either
3 avhrr_to_ccsds A stream of CCSDS packets either one per file or
concatenated together, or a set of images.

1 amsua_to_ccsds

Enables the modification/corruption of any input
4 buffer_corrupt_filter file/buffer with a single output file consisting of the
input files and any specified corruptions.

For converting one or more files in the PDA-PDU
format (a concatenated list of CADU packets) into

5 cadu_to_ccsds CCSDS packets. Takes input as list of input files
containing CADU packets and outputs the one or more
files containing lists of CCSDS packets.

For converting a stream of ISPs to an EPS LO product.
Takes input one or more streams of CCSDS packets
(optionally previously generated MMAM files) outputs
one EPS L0 product.

6 cesds_to 10

AAPP takes “EPS level 0” format data as input. But some reception systems deliver the data in
CADU format (another raw format). This data need conversion to AAPP input data format.
EUMETSAT developed MetOpizer software tool for this conversion. It is primarily being used to
preprocess the raw data for AAPP. The main tools used in autonomous data processing chain are:
cadu_to_ccsds and ccsds_to_10.

4. Data Processing

This section briefly describes the processing of level-0 to level-1 data of NOAA and MetOp
satellites in HRPT and AHRPT formats, respectively. The main submission script,
‘submit_hrpt_process.sh’ is provided in Annexure-I.

As a first step, the files received during the last 371 mins (6 hours and 11 mins) are created into
a list (a simple text file) and passed on to the main submission script, ‘submit_hrpt_process.sh’. The
main script calls a subscript based on the satellite, either NOAA (‘noaa_hrpt_process.sh’; see
Annexure-I1) or MetOP (‘metop_hrpt_process.sh’; see Annexure-111). The flow diagram of the data
processing chain is shown in Figure 1. The following subsections further describe the processing
steps.

4.1 NOAA HRPT Data

NCMRWEF receives HRPT data from NOAA-15, NOAA-18, and NOAA-19 satellites. As
mentioned earlier, on NOAA-15 and NOAA-18, the MHS sensor is faulty hence only AMSU-A,
AVHRR and HIRS sensor data are processed. The raw data has been pushed by INCOIS in near
real-time, and at NCMRWEF, this is processed at every six hours. The data has been processed with
AAPP from level-0 and the operational procedure is given in Annexure-I1.

The input raw data needs pre-processing due to 348 extra bytes at the end of each frame. Hence
a perl script, called ‘strip_hrpt.pl’? is used for removing these extra bytes of data for all NOAA
satellites and processed with AAPP. AAPP’s processing script, “AAPP_RUN_NOAA” is the main
script called by “noaa_hrpt_process.sh” to process the data. AAPP has the capability to generate
individual sensor data (level-1b, level-1c) and also able to map one sensor grid on to other sensors.
For NWP purposes, level-1d data has been used (mapping AVHRR, MHS, on to HIRS grid). AAPP
also converts these processed files into user friendly Hierarchical Data Format (HDF) files. The
data processed by AAPP is plotted using PyTroll’s satpy (v 0.21.0) (Raspaud, et al., 2020). The
next section describes the data visualisation and the scripts involved. Similarly, the level-1c data
products from AMSU-B, and MHS sensors data are plotted using a separate python script as
described in the next section.

4.2 MetOp AHRPT Data

MetOp-A and MetOp-B data are received in another raw data format called CADU. Using
EUMETSAT’s MetOpizer tool, the raw data is converted into level-0 format. The main MetOpizer
tools used for data pre-processing are: cadu_to_ccsds and ccsds_to_I0.

An issue with MetOp-B’s AMSU-A data was flagged, when the MetOpizer module
‘ccsds_to 10 failed. A simple error diagnosis indicated a possible data corruption at the start of the
file, which could be due to the fact that data reception centre starts acquiring the data at low
elevations. Generally, the recommended data reception is 5° above horizon. Hence first 1000
frames (based on ephemeris and attitude information) from each file were stripped. Each frame
contains 1024 bytes of data; hence 1024000 bytes of data has been removed from MetOp-B’s
AMSU-A sensor. No such issues were encountered with MetOp-A. The shell script,
‘metop_hrpt_process.sh’ (see Annexure-1l1) is used to process the data from sensors onboard
MetOp satellites (i.e. AMSU-A, AVHRR, MHS and HIRS). After processing these data for

2 This script ‘strip_hrpt.pl> was provided Dr. Nigel Atkinson, UK Met Office.

individual sensors, these files are converted to HDF. Finally, the MetOp satellite data (AVHRR,
AMSU-A, MHS) is visualised using Python and wrapper shell scripts, which is described in the
next section.

5. Data Visualization

This section briefly describes the visualization of processed HRPT/AHRPT data from NOAA
and MetOp satellites for both level-1b and level-1c data products. There are several options
available for visualisation of the data for more information about various tools please refer to
https://www.nwpsaf.eu/site/software/aapp/visualisation/. In this technical report, the existing
python-based framework of PyTroll at NCMRWF has been leveraged for visualisation.

To plot level-1b data, a wrapper shell scrip called ‘run_I1b_plot.sh’ (see Annexure-1V) is
invoked which sets up the appropriate Python environment, creates the list of level-1b files to be
plotted and generates temporary Python scripts in system ‘scratch’ area®, which are based on a
template Python script called ‘plot_hrpt_I1b_mas.py’ (see Annexure-VI) and makes use of the
satpy reader* called ‘avhrr_l1b_aapp’. The satellite imageries are generated for AVHRR channels:
1, 2, 4 and 5 centred at wavelengths: 0.630 pum, 0.862 pm, 10.8 um and 12.00 pm, respectively.
The channels 1 and 2 are in visible range whereas channels 4 and 5 are in thermal infrared range.
The Figure 2 is representative snapshot of the Tropical Cyclone (TC) AMPHAN on 18 May 2020,
wherein the top panels are in the visible range (i.e. channels 1 and 2), while the bottom panels show
the TC in infrared channels as observed by AVHRR sensor onboard NOAA-18 satellite. The Figure
3 through Figure 5 provide a progressive snapshot of the TC AMPHAN as captured by AVHRR
sensor onboard the three satellites: NOAA-18, NOAA-19 and MetOp-A, respectively, at 12um
wavelength (Channel-5). The dates of progression in each of the above three Figures correspond to
May 18", May 19" and May 20'", 2020.

A similar approach to AVHRR has been adopted to visualize level-1c data from AMSU-A and
MHS sensors, wherein a wrapper script called ‘run_I1c_plot.sh’ (see Annexure-V) is the governing
script, however it does not create Python scripts based on a template rather it makes use of a single
script called ‘aapplc_plot.py’ developed by EUMETSAT and further modified by the third author
of this report to include matplotlib’s basemap projection for the Indian domain. This version of
‘aapplc_ploy.py’ is presented as Annexure-VIl. The wrapper script as usual provides the Python
environment and arguments to the above-mentioned Python script.

These images were generated after processing the data for 15 channels for AMSU-A and five
channels for MHS. Figure 6 shows the MHS imagery (from NOAA-19 satellite) for TC AMPHAN
on 18 May 2020. These five images of TC AMPHAN are as acquired by MHS at microwave

3 The automatically generated Python scripts can be found on MIHIR HPCS at: /scratch/satviz/tmp/aapp/plt_l1b/
folder. This area is cleaned as per MIHIR data policy.

4 The Python class definition is available at:
https://satpy.readthedocs.io/en/latest/api/satpy.readers.html?highlight=aapp#satpy.readers.aapp_I1b.AVHRRAAPPL1B
File

10

https://www.nwpsaf.eu/site/software/aapp/visualisation/
https://satpy.readthedocs.io/en/latest/api/satpy.readers.html?highlight=aapp#satpy.readers.aapp_l1b.AVHRRAAPPL1BFile
https://satpy.readthedocs.io/en/latest/api/satpy.readers.html?highlight=aapp#satpy.readers.aapp_l1b.AVHRRAAPPL1BFile

channels centred at: 89.0V, 157.0V 183 (+3.0) H, 183 (£3.0) H and 190.3V with bandwidths of 2.8,
2,8, 2.0, 1.0 and 2.0 GHz respectively. The H and V stand for horizontal and vertical polarization.
The spatial resolution of this passive microwave sensor, MHS, works out to be 16 km at centre.

The Figure 7 highlights the progression of TC AMPHAN as seen through a passive microwave
sensor, i.e. NOAA-19 MHS. The horizontal direction (row-wise) span through the five microwave
spectral channels, while the vertical (column-wise) depict the progression of the TC, with the last
row indicating the landfall of AMPHAN on May 20", 2020. Similarly, the Figure 8 depicts four
channels of MHS sensor from MetOp-A satellite for dates May 16™ through 18™. The Figure 9
highlights the progression (vertically or row-wise) of TC AMPHAN by a sounder called AMSU-A
onboard three different platforms: NOAA-18, NOAA-19 and MetOp-A (horizontally or column
wise). Note that AMSU has an effective spatial resolution of 48 km at centre. Finally, the Figure 10
shows the life cycle of TC AMPHAN (from May 12" to May 20", 2020) using a single thermal
band (channel-5) of AVHRR sensor onboard both the NOAA and MetOp series of satellites.

As highlighted by Figure 2 through Figure 10, a visualisation platform can provide a very good
synoptic understanding for nowcasting purposes. Along with the visualisation, the above-mentioned
ADPC will provide the necessary, quality-controlled, rightly-formatted and timely data to NWP’s
DA system for ingestion and assimilation.

6. Data Monitoring

Any automatic data processing chain is incomplete if it does not have a monitoring and alerting
system that can alert any break in work flow right from data reception to product generation. The
file count varies daily due to orbit shift; and on average (per day basis) NCMRWF receives 16 files
or more making up to 2.5 GB of total size. Given the quantum of data, a checksum procedure is
done on the size and number of files on daily and monthly time scales. The data monitoring script,
‘plt_delay.R’, was written in R language (see Annexure 1X) and is controlled by a wrapper script,
‘run_plot_time_delays.sh’, shown in Annexure-VIII). The monitoring is done every day at 11AM
and plots of previous day data with time delay between data reception at INCOIS (extracted based
on file name) and data reception at NCMRWEF (local time). The time difference between these two
times is plotted to monitor for each file and is depicted in Figure 11, valid for 15 April, 15 May and
15 June.

Similarly, monthly data monitoring is done on 5% of every month for the previous month. The
Figure 12 depicts monthly monitoring valid for April, May and June, 2020. As seen in Figure 12,
reception delays in the order of 2-3 days were observed in the months of April and May (red
ellipses), especially during the weekends, which have been addressed with INCOIS. The data
monitoring aspect helps to understand the time delays in data reception at NCMRWEF, if the delay is
more than specified time, a follow up action is initiated.

11

7. Acknowledgements

We acknowledge the Head, NCMRWEF for his continuous support. We also thankful to D.G.,
India Meteorological Department for taking initiative for supplying the data at NCMRWEF. We also
thankful to INCOIS, Hyderabad for sending the data to NCMRWF. We also thank Dr. Nigel
Atkinson, UK Met Office for providing us the perl script and troubleshooting data issues.

8. References

[1].Atkinson, N. (2017). ATOVS and AVHRR Pre-processing Package (AAPP): Overview.
EUMETSAT, NWP SAF. Darmstadt: EUMETSAT. Retrieved 07 19, 2020, from
https://nwp-saf.eumetsat.int/site/download/documentation/aapp/NWPSAF-MO-UD-
004_Overview_v8.0.pdf

[2].Atkinson, N. (2019). ATOVS and AVHRR Pre-processing Package (AAPP): Installation
Guide. EUMETSAT, NWP SAF. Darmstadt: EUMETSAT. Retrieved 07 14, 2020, from
https://nwp-saf.eumetsat.int/site/software/aapp/documentation/aapp-v8-installation-guide/

[3].Atkinson, N. (2020). ATOVS and AVHRR Pre-processing Package (AAPP): User Guide,
Ver 8.5. EUMETSAT, NWP SAF. Darmstadt: EUMETSAT. Retrieved 07 18, 2020, from
https://nwp-saf.eumetsat.int/site/software/aapp/documentation/aapp-v8-userguide/

[4]. EUMETSAT. (2015). MetOpizer User Guide, v4A. EUMETSAT. Darmstadt: EUMETSAT.
Retrieved 07 20, 2020, from
https://www.eumetsat.int/website/wcm/idc/idcplg?ldcService=GET_FILE&dDocName=PD
F_METOPIZER_USERGUIDE&RevisionSelectionMethod=LatestReleased&Rendition=W
eb

[5]. EUMETSAT. (2019). TD 18 MetOp Direct Readout AHRPT Technical Description.
EUMETSAT. Darmstadt: EUMETSAT. Retrieved 07 20, 2020, from
http://lwww.eumetsat.int/website/wcm/idc/idcplg?ldcService=GET_FILE&dDocName=PDF
_TD18 METOP_A DIRECT_ READ&RevisionSelectionMethod=LatestReleased&Renditi
on=Web

[6].Raspaud, M., Hoese, D., Lahtinen, P., Dybbroe, A., Finkensieper, S., Proud, S., . . . Sigurds,
E. (2020). pytroll/satpy: Version 0.21.0. Zenodo. doi:10.5281/zenodo.3742294

[7]. WMO. (2017). Guide to the Direct Broadcast Network for Nearr-real-time Relay of Low
Earth Orbit Satellite Data: Attachment to the Guide to the WMO Information System
(WMO-No. 1061). WMO. Geneva: WMO. Retrieved 07 17, 2020, from
https://library.wmo.int/doc_num.php?explnum_id=4135

12

9. Figures

INCOIS (DBNet)

NOAA - HRPT METOP-AHRPT

AVHRR I1b images

DATA Monitoring Visualization
(Daily, Monthly) AMSU/ MHS |1c images

Figure 1: The flowchart of data processing at NCMRWF for NOAA and MetOp satellites.

13

AVHRR NOAA-18

o,
2 &

Figure 2: NOAA-18 AVHRR channels: 1 & 2 (top panel), channels: 4 & 5 (bottom panel) of TC AMPHAN
valid on 18 May 2020.

14

AVHRR NOAA-18 (Channel 5)
20200518 20200519 20200520

Figure 3: NOAA-18 AVHRR channel-5 imagery from NOAA-18 valid on 18, 19, 20 May 2020, highlighting
the TC AMPHAN progression.

AVHRR NOAA-19 (Channel 5)
20200519 20200520

Figure 4: NOAA-19 AVHRR channel-5 imagery from NOAA-18 valid on 18, 19, 20 May 2020, highlighting
the TC AMPHAN progression.

15

AVHRR METOP-A (Channel 5)

20200518 20200519 20200520

A

: & o '

Figure 5: METOP-A AVHRR channel-5 imagery from NOAA-18 valid on 18, 19, 20 May 2020,
highlighting the TC AMPHAN progression.

MHS NOAA-19 (20200518)

mhsilc_noaald_20200518_0023_58110.11chS mhsllc_noaald 20200518 0023 58110.1ch5

mhsilc_nosald_20200518_0023_58110.11¢h5

£2't 83E s4E S8E SOE SE SVE

mhsllc_noaald_20200518_0023_58110.1ch5

Chasnel 3 8T (K)

82t SE B6E GsE S0F S S0E

Figure 6: A spectral snapshot of TC AMPHAN as observed by MHS onboard NOAA-19 at a spatial
resolution of 16 km and valid on 18 May 2020.

16

MHS NOAA-19

Figure 7: Progression of TC AMPHAN from 18 to 20 May, 2020 as observed by NOAA-19 MHS.

17

MHS METOP-A
Ch_?,’,... ch-4

il 102 20200517.0305_ 70848 1S mhsilc M02 202005170305 7044411 A5

Figure 8: Progression of TC AMPHAN from 16 to18 May, 2020 as observed by METOP-A MHS.

18

NOAA-18

smsuallc nosald 20200516 1522 772511ChS

16 May

B MT T SR T WE

smsuallc nosals 20200517 1510 7726511ChS

COCCE O

1c_nosals 20200518 1459 _77279.11¢.h5

18 May

CEECE O

amsuallc_nosals 20200519 0333 77287.0ChS

NOAA-19

amsusile_MO2_20200516_1435_70436.11ChS

- -
T BeT BT ST Wt mET T

amsusilc_noss19 20200517 1148 5810211cnS

WE ser s T T W

0519 0011 _58124.11c 1S

METOP-2

amsuailc_MO2_20200516_1435 7043611 h5

CONC O

amsuallc MO2_20200518 0245 70458 11ChS

o

Figure 9: The AMSU-A channel-2 imagery from NOAA-18, NOAA-19 and METOP-A valid on 16, 17, 18
and 19 May 2020.

19

20200512 20200513 20200514

PR

20200520

¥

Figure 10: The cyclogenesis of TC AMPHAN as observed by AVHRR (Channel-5) onboard NOAA and
METOP series of satellites, valid from 12-20 May 2020.

20

a) HRPT Data Delay at NCMRWF : 2020-04-15 b) HRPT Data Delay at NCMRWF : 2020-05-15 C) HRPT Data Delay at NCMRWF : 2020-06-15
25530000019 | | s Ml 7 23:46:50-n083-19 :
=t 17740000818 | | | T T
17:02:20-metop2) = 17:11:00-metop-1 |
L 163830meiop2 | | | s r
16:30:50-metop-1 | | | 16:10:50-metop-1 | | ! H
L I -
15:1630-metop2 | | | T 15:85:00-metop-2 :
= 14:55:50-metop-2 %
e | 15:29:40-metop-1 \
A 10nonnt8 | | | 14:3420-metop-1 - =
19302000m15 | | | 141550000015 Hazonnc e !
s 13562000819 | | | 14:1530-metop-2 :
13:01:30-008819 | | | R = - =i
L uarabaceets [} 1251500018 ‘
1121:10-n088-19 i 12:11:50-n0as-19
e s0ar00ncasts || 11:12:50n098-19 |
05:23:20-metop-1 i1 J T]
o 0s0z10metopt | || 06:03:50-metop-1 {
o4:07: 2 | . v
s ([7] —— - ‘
’ e 0a:46:40metop2 | | | - T
03:31:50n0sa18 | | | L
L 4 o4 1 H
== 22.40-metop-1 o ;
assmor | |} wos2enonsts | | | €3:3030-n088-15
01:48:50 00819 | | | 2422000ms18 | | I
(o 020920metop2 | | |
00:4520 03815 | | | : 02:45.00-metop-1
: 01290000015 |
00:07:00 08819 | | ! 005820008819 | | 01:30:40-0088-19
6 5 10 15 0 5 10 15 00 05 10 15 20 25 30
Time (hours) Time (hours) Time (hours)

Figure 11: Data monitoring of HRPT/AHRPT reception at NCMRWEF from INCOIS valid for 15 April, 15

May and 15 June 2020.

_a} HRPT Data Delay at NCMRWF : Apr-2020

L] 10 20 30 40 50
Time (hours)

1
60

b) HRPT Data Delay at NCMRWF : May-2020

0 10 20 30 40 50 60
Time (hours)

70

c) HRPT Data Delay at NCMRWF : June-2020

Time (hours)

Figure 12: Monthly data monitoring of HRPT/AHRPT reception at NCMRWF from INCOIS valid for
months: April, May and June 2020.

21

10. ANNEXURES

Annexure-I: submit_hrpt_process.sh

#!/bin/bash
Get the input hrpt data as list and pass for data processing
set -x

export HOMED=/home/satviz/hrpt noaa/processing hrpt data
export SCRP=$HOMED/scripts

export SRC=$HOMED/src

export DATA=/home/hrpt incois

export LOG=/scratch/satviz/tmp/aapp/LOGS

export AAPP_PREFIX=/home/satViZ/AAPP/AAPP_8.5U/AAPPU

find $DATA/2* -cmin -371 >list.hrpt

for file in “cat list.hrpt® ; do

Pass on the data file to process corresponding script (NOAA-
15/18/19 / MetOp)
pfile="echo $file | awk -F "/" '{print SNF}'"

sensor="echo $file | awk -F "." '{print SNF}'"
sat="echo $sensor | cut -cl-4°
if [[$sat == T"noaa"]] ; then
echo "INPUT DATA from NOAA Satellite -- S$sat - $sensor"

$SCRP/noaa hrpt process.sh $file S$sensor S$sat >&
$LOG/log.noaa ${pfile} &

elif [[$sat == "meto"]] ; then
echo "INPUT DATA from MetOp Satellite -- $sat - $sensor"
$SCRP/metop hrpt process.sh $file S$sensor S$sat >¢&
$LOG/log.metop ${pfile} &

else
echo " Input Data neither NOAA nor MetOp "
fi
echo "file - S$sensor -- $sat"
sleep 60

done # file

set +x

22

Annexure-11: noaa_hrpt_process.sh

#!/bin/bash
1. Processing NOAA-Level 0 HRPT data to level-1d (HIRS Grid)
2. Processing NOAA-AVHRR Data into level 1b, and level 1c

set -x

export pid=$$

export HOMED=/home/satviz/hrpt noaa/processing hrpt data
export SCRP=$SHOMED/scripts

export SRC=$HOMED/src

export OUTDIR=/home/satviz/hrpt noaa/processing hrpt data/data
export AAPP PREFIX=/home/satviz/AAPP/AAPP 8.5U/AAPPU

infile=$1
sensor=S$3

sat=$2

source $SSRC/remodule process metop

[SAAPP PREFIX] || { echo "AAPP PREFIX is not defined"; exit; }
[-d "SAAPP PREFIX"] || { echo "AAPP PREFIX is not a directory"; exit;
}

"$AAPP_PREFIX/ATOVS_CONF" #AAPP environment

ofile="echo $infile | awk -F "/" '{print S$NF}'"

odate="echo $ofile | cut -cl-9°

export WRK=/scratch/${LOGNAME}/tmp/aapp/noaa/s$odate/${pid}
export ODIR=S$SOUTDIR/S$odate

export levell=SWRK/levell

rm -rf $SWRK
mkdir -p $levell SODIR S$WRK; cd SWRK

#Processing NOAA Level 0 Sounding data and creating level 1d (hirs
#grid) ----————-----

Pre-Processing raw data (For the NOAA-15/18/19 data, we have 348
extra bytes at the end of each frame,

d1.e. 22528 bytes instead of 22180). We have to remove it first
#!/usr/bin/perl $SRC/strip hrpt.pl <$infile> ./Sofile

usleep 300

23

if [[$sat == "noaa-15" || $sat == "noaa-18"]] ; then
instr="AMSU-A HIRS AVHRR"

elif [[$sat == "noaa-19"]] ; then

instr="AMSU-A MHS HIRS AVHRR"

else
echo "The satellite is not NOAA-15/18/19 .. exiting now ... "
exit 1

fi

grids="HIRS"

Running AAPP

time AAPP RUN NOAA -i "Sinstr" -g "S$grids" -o SWRK Sofile>
log noaa l.out 2>&1

status=$?

if [S$status != 0]; then
echo "AAPP RUN NOAA failed"
exit 1

else

outfiles=S$(ls *.11lb *.llc *.11d 2>/dev/null)
for file in Soutfiles; do

if [-s $file]; then
mv $file Slevell/
else
rm S$file
fi

done # file

checking whether level-1 files created
if ["Soutfiles"]; then
echo "AAPP RUN NOAA ended: output in $Slevell"
else
echo "No output files were generated"
fi
fi

Converting to HDF5 files
cd Slevell
has hdf5=Y
for file in $(ls hrpt*.1llb amsu*.llc mhs*.llc hirs*.llc hirs*.11d);
if [S$has hdf5=Y]; then
convert to hdf5 $file || has hdf5=N
fi
done # file

24

do

checking whether converted to hdf5
if [Shas hdf5]; then
echo "Converted 1llc files to hdf5"
else
echo "Have not converted 1llc files to hdf5"
fi

MAIA4 USE GFS="no"
has hdf5=Y
cd S$levell

MAIA4 RUN_AVHRR $PWD/hrpt *.1lb

status=$?

if [S$status != 0]; then

echo "MAIA4 RUN AVHRR failed"
exit
else

convert to hdf5 S${ofile}.llc has hdf5=N
fi

if [Shas hdf5]; then
echo "Converted HRPT-1lc files to hdf5"
fi

Moving all 11b, 1llc, 11d files to ODIR
mv * SODIR/
rm —-rf SWRK

echo "Successful Creation of NOAA files

exit
set +x

25

Annexure-111: metop_hrpt_process.sh

#!/bin/bash
1. MetOp-2 A/ 1 B raw CADU data to AAPP level 1c
2. Processing MetOp-2 A/1 B data to level-1d (HIRS Grid)

set -x

export pid=$$

export HOMED=/home/satviz/hrpt noaa/processing hrpt data
export SCRP=$SHOMED/scripts

export SRC=$HOMED/src

export OUTDIR=/home/satviz/hrpt noaa/processing hrpt data/data
source $SRC/remodule process metop

export AAPP PREFIX=/home/satviz/AAPP/AAPP 8.5U/AAPPU

source $SSRC/remodule process metop

export MetOpZ=/home/apps/SiteSoftwares/gnu/metopizer 3.51.1
export
PATH=$PATH: $MetOpZ/bin: /home/apps/SiteSoftwares/gnu/libjpeg utility/bin:

export
LD LIBRARY PATH=$LD LIBRARY PATH:/home/apps/SiteSoftwares/gnu/fec 3.0.1/
lib:/home/apps/SiteSoftwares/gnu/libjpeg utility/lib:

infile=$1
sensor=53

sat=$2

#

#==== Check paths

cadu_to_ccsds>/dev/null 2>&1 || { echo "Error: metopizer function
cadu to ccsds not found: please modify your PATH"; exit 1; }

["$S(ldconfig -p | grep libfec)™ 1 || ["$(IFS=:; for dir in

SLD LIBRARY PATH; do [-x $dir/libfec.so] && echo Y; done)"] || \
{ echo "Error: libfec needs to be either centrally installed or its
location added to LD LIBRARY PATH"; exit 1; }

[$AAPP_PREFIX 1 |11 { echo "AAPP_PREFIX is not defined"; exit; }
[-d "$AAPP_PREFIX"] Il { echo "AAPP PREFIX is not a directory"; exit;
}

"SAAPP PREFIX/ATOVS CONE" #AAPP environment

26

ofile="echo $infile | awk -F "/" '{print S$SNF}'"

echo "INFILE = $infile "
echo "OFILE = $ofile "

echo "SENSOR = S$sensor "
echo "SATLTE = S$sat "
odate="echo $ofile | cut -cl-9°

export WRK=/scratch/${LOGNAME}/tmp/aapp/metop/S$odate/${pid}

export ODIR=$OUTDIR/Sodate

export levell=$WRK/levell

export level0=SWRK/levelO

export metpzw=SWRK/metopizer work

export
metpzconfig=/home/srinivas/sree/misc/AAPP 8.5U/test cases/tars/operation
al/config files

rm —-rf SWRK

mkdir -p S$ODIR SWRK $levelQ S$levell S$Smetpzw $metpzw/MMAM ; cd S$SWRK
#H4#

#export DIR NAVIGATION=SWRK/orbelems

#export DIR DATA TLE=SWRK/orbelems/tle db

#mkdir -p $DIR DATA TLE S$DIR NAVIGATION/satpos

#H4#

1. Processing MetOp-A/B Level 0 Sounding data and creating level 1d
(hirs grid) ---—-—-——————--
#==== Set the satellite and input file (change these as needed)

There seemed to be a data corruption near the start of the file that
was causing AMSU-A processing in "ccsds to 10" to fail.

As a workaround I removed the first 1000 frames (each frame is #1024
bytes) from the file, like this:

if [[$sat == "metop-1"]] ; then

instr="AMSU-A HIRS AVHRR"
echo " Processing for MetOp-1 Satellite ... "
tail -c +1024000 $infile> S{ofile}

bsat=M01

else

cp S$infile S${ofile}

bsat=M02

fi # input data process

27

infile=$ofile

instruments metopizer="amsuamhshirsavhrriasi"
instruments AAPP="AMSU-A MHS HIRS AVHRR"

==== Run the MetOpizer
cd metopizer work
ccsdsfile=$ (basename $infile) ccsds

$MetOpZ/bin/cadu_to ccsds --in ../S$infile --out S$Sccsdsfile || { echo
"cadu to ccsds failed"; exit 1; }

instr=hktm
echo $instr
SMetOpZ/bin/ccsds to 10 --config-apid $metpzconfig/ccsds.config \
--config-mphr S$metpzconfig/mpr-config-${bsat} \
-d SPWD -g MMAM -t tle -i ${ccsdsfile}.S$S{instr}.ccsds || {
echo "ccsds to 10 failed"; exit 1; }

tlefile=$(ls MMAM/TLE*.tle | tail -1) #e.qg.
TLE MO2 002690 20160323010000Z 20160323160000Z.tle

[-z Stlefile]1&& { echo "No tle file created"; exit 1; }

for instr in $instruments metopizer; do
echo $instr
$MetOpZ/bin/ccsds_to 10 --config-apid $metpzconfig/ccsds.config \
-—-config-mphr S$metpzconfig/mpr-config-${bsat} \
-d $PWD -u MMAM -1 ${ccsdsfile}.S${instr}.ccsds || { echo
"ccsds to 10 failed"; exit 1; }
done

mv *HRP*Z S$levelO/
echo "=

echo "==s=s===================="
#==== Rename the TLE file for AAPP use

tlefile=$(ls MMAM/TLE*.tle | tail -1)

#TLE M02 002690 20160323010000Z 20160323160000Z.t1le
[-z Stlefile]&& { echo "No tle file created"; exit 1; }

28

set $(IFs="_"; echo Stlefile)
timestamp=54

#==== Run AAPP to convert to level 1lc
cd SWRK

#AAPP RUN MetOp -d $level0 -o S$levell -i "Sinstruments AAPP" -g " "
AAPP RUN MetOp -d $levelO -o $levell -i "Sinstruments AAPP" -g "HIRS"

Converting to HDF5 files

cd Slevell

has hdf5=Y

for file in $(ls *.11lb *.1llc *.11d); do
if [S$has hdf5=Y]; then

convert to hdf5 $file || has hdf5=N

fi

done # file

checking whether converted to hdf5
if [Shas hdf5]; then
echo "Converted 11b 1lc 11d files to hdf5 and moved to
SODIR ————————-— "
Moving all 11b, 1llc, 11d files to ODIR
mv * SODIR/
else
echo "Have not converted 1llc files to hdf5"
fi

MAIA4 USE GFS="no"

has hdf5=Y

cd $Slevell

MAIA4 RUN AVHRR $ODIR/hrpt *.llb

status=$?

if [S$status != 0]; then
echo "MAIA4 RUN AVHRR failed"
exit
else
convert to hdf5 ${ofile}.llc has hdf5=N
fi

if [Shas hdf5]; then

29

echo "Converted HRPT-1lc files to hdf5"
fi

Moving all 11b, 1llc files to ODIR
mv * SODIR/

sleep 60

rm -rf S$SWRK

echo "Successful Creation of MetOp files

exit
set +x

30

Annexure-1V: run_I1b_plot.sh
(A wrapper to a python template: plot_hrpt_I1b_mas.py)

#!/bin/bash

Plotting HRPT Level-1b AVHRR Data (Channels 1, 2, 4, 5) using python
satpy

set -x

export HME=/home/satviz/hrpt noaa/processing hrpt data
export SCRP=$HME/scripts

export SRC=S$HME/src

export L1B DATA=$HME/data

export OUTD=S$HME/plots/python plots

export LOGS=/scratch/satviz/tmp/aapp/LOGS

export WRK=/scratch/S${LOGNAME}/tmp/aapp/plt 11b

source /home/satviz/Work/scripts/source/env-satpy0210
rm -rf SWRK ;mkdir -p SWRK ; cd SWRK

rm —-f list.llb 1list.hrpt

rm -f hrpt *.11b

cp $SCRP/list.hrpt

Getting the data L1B data date directories

for infile in “cat list.hrpt® ; do
ofile="echo $infile | awk -F "/" '{print S$NF}'"

odate="echo $ofile | cut -cl-9°
oyear="echo $ofile | cut -cl-4"
omon="echo $ofile | cut -c6-7"
oday="echo $ofile | cut -c8-9°
otime="echo $ofile | cut -cll1l-14°
sat="echo $ofile | awk -F "." '{print SNF}'"
if [[$sat == "metop-1"]] ; then
bsat=M01
elif [[$sat == "metop-2"]] ; then
bsat=M02
elif [[$sat == "noaa-15"]] ; then

bsat=noaalb
elif [[$sat == "noaa-18"]] ; then
bsat=noaalsl
elif [[$sat == "noaa-19"]] ; then
bsat=nocaal?9
elif [[$sat == "noaa-20"]] ; then

31

bsat=noaa20
else
bsat=$sat
fi
echo
$L1B DATA/Sodate/hrpt S${bsat} ${oyear}${omon}${oday} ${otime} *.1llb >>
list.1l1lb
done #infile
usleep 30

Created list files with 11b datasets
while read -r file ; do

ofile="echo $file | awk -F "/" '{print S$NF}'"
asat="echo Sofile | awk -F" " '{print $2}' | tr 'a-z' 'A-Z'"
ymd="echo $ofile | awk -F ' ' '"{print $3}'"

year= echo $ymd | cut -cl-4°

mon="echo $ymd | cut -c5-6"

day="echo $ymd | cut -c¢7-8°

export FIGS DIR=SOUTD/${year}${mon}${day}/AVHRR
if [[-f "$file"]] ; then

[! -d SFIGS DIR] &&mkdir -p S$FIGS DIR
1ln -sf S$file

inf=hrpt 11b plot mas.py
sed -e 's|YEAR EDIT|'Syear'|g ; s|MON EDIT|'Smon'|g ;
s|DAY EDIT|'$day'|g; s|FILE NAME|'Sofile'|g ; s|FIGS DIR|'S$FIGS DIR'|g'
$SRC/$inf >plt S${ofile}.py
/home/satviz/anaconda3new/envs/satpyenv0210/bin/python
plt S{ofile}.py>& $SLOGS/log.plt S${ofile} &
usleep 5
done #ch

usleep 300
sleep 180

fi # file check
done < list.llb # file
set +x
exit

32

Annexure-V: run_l1c_plot.sh

#!/bin/bash

Plotting HRPT Level-lc AMSU-A (Channels 1-15), MHS Data (Channels 1-
5) using python

set -x

export HME=/home/satviz/hrpt noaa/processing hrpt data
export SCRP=S$HME/scripts

export SRC=S$HME/src

export L1C DATA=$HME/data

export OUTD=S$HME/plots/python plots

export LOGS=/scratch/satviz/tmp/aapp/LOGS

export WRK=/scratch/${LOGNAME}/tmp/aapp/plt llc

source /home/satviz/Work/scripts/source/env-satpy0210
rm -rf SWRK ;mkdir -p SWRK ; cd SWRK

rm —-f list.llc list.hrpt

rm -f amsuallc_*.llc.h5 mhsllc *.1lc.hb

cp $SCRP/list.hrpt

Getting the data L1B data date directories

for infile in “cat list.hrpt® ; do
ofile="echo $infile | awk -F "/" '{print S$SNF}'"

odate="echo S$ofile | cut -cl-9°

oyear="echo $ofile | cut -cl-4"

omon="echo $ofile | cut -c6-7"

oday="echo $ofile | cut -c8-9°

otime="echo $ofile | cut -cll1-14°
sat="echo Sofile | awk -F "." '"{print S$NF}'"

if [[$sat == "metop-1"]] ; then

bsat=M01

elif [[$sat == "metop-2"]] ; then

bsat=M02

elif [[$sat == "noaa-15"]] ; then

bsat=noaalb

elif [[$sat == "noaa-18"]] ; then

bsat=noaalsl

elif [[$sat == "noaa-19"]] ; then

bsat=noaal?
elif [[$sat == "noaa-20"]] ; then
bsat=noaa20

33

else
bsat=$sat
fi

echo
$L1C_DATA/Sodate/amsuallc_ ${bsat} S${oyear}S{omon}${oday} S${otime} *.llc.
h5 >> list.llc

echo
$L1C_DATA/Sodate/mhsllc ${bsat} ${oyear}${omon}${oday} ${otime} *.llc.h5
>> list.llc
done #infile
usleep 30

Created list files with 11lb datasets
while read -r file ; do

ofile="echo $file | awk -F "/" '{print SNF}'"

asat="echo Sofile | awk -F" " '{print $2}' | tr 'a-z' 'A-Z'"
ftype="echo Sofile | awk -F ' ' '"{print $1}'"
ymd="echo $ofile | awk -F ' ' '"{print $3}'"

year= echo $ymd | cut -cl-4°

mon="echo $ymd | cut -c5-6"

day="echo $ymd | cut -c7-8°

export FIGS DIR=SOUTD/${year}${mon}${day}/AMSU
if [[-f "S$file"™ 1] ; then

[! -d SFIGS DIR] &&mkdir -p SFIGS DIR

In -sf $file

if [["Sftype" == "amsuallc"]] ; then
nch=15
elif [["S$ftype" == "hrpt"]] ; then
nch=5
elif [["Sftype" == "mhsllc"]] ; then
nch=5

fi

for ch in $(eval echo "{1..$nch}"™) ; do

/home/satviz/anaconda3new/envs/satpyenv0210/bin/python
$SRC/aapplc plot.py -i $Sofile -c $ch -a -H >¢&
$LOGS/log.plt ${ofile} ch${ch}
usleep 5

34

mv ${ofile} ${ch}.png
done #ch
usleep 300

unlink S$file

fi # file check
done < list.llc # file

set +x

$FIGS DIR/

35

Annexure-VI: plot_hrpt_I1b_mas.py

#!/usr/bin/env python

R

What does this script do?

This python script takes NOAA-AVHRR Level-1b data processed by AAPP
and plots it using satpy. This script is governed by a wrapper shell
script written by Dr. D. Srinivas and this python script is written
by Dr. M. Sateesh. This script has been edited to PEP8 standards by
MNRS.

Start importing

import os, sys

os.environ['PPP_CONFIG DIR'] = '/home/satviz/.local/satpy/etc/"
from satpy import Scene

from glob import glob

from satpy.utils import debug on

debug_on ()

import numpy as np

import aggdraw

Start logic
daate = 'YEAR EDIT.MON EDITDAY EDIT'
date = 'YEAR_EDITMON_EDITDAY_EDIT'

Set up base folders

font dir = '/home/satviz/Work/fonts/'

shape dir = '/home/satviz/Work/GSHHS/India/'
base dir = 'FIGS DIR/'

web dir = '/home/satviz/Work/web/' + date + '/’
logo dir = '/home/satviz/Work/logo/'

Start reading files

files = glob("./" + "FILE NAME")
if (len(files)>0):

for filename in files:

scn = Scene (filenames=[filename], reader='avhrr 1lb aapp')
channels = ['Channell', 'Channel2', 'Channeld4', 'Channel5"']
scn.load (channels)

indImg = scn.resample('India SC30"')

For platform name

platform name = scn['channell'].attrs['platform name']
start time= scn['channell'].attrs['start time']

end time= scn|['channell'].attrs['end time']

36

for channel in channels:
indImg[channel].attrs['platform name'] = platform name
indImg[channel].attrs['start time'] = start time
print (channel)
indImg.save datasets (base dir = base dir,

filename='ind {platform name} {sensor} {name} {start time:%Y%m%d SH¥M3S}
.png',compute=True,writer="'simple image',datasets=[channel],
overlay = {'coast dir': shape dir,
'resolution':'i', 'level coastl':
1, 'level borders':1l, 'level coast2': 7,'widthl':1,
'width2':0.2, 'width':0.8, 'color':'white',
'grid': {'major lonlat': (10,

10), 'minor lonlat':(2,2),

'fill opacity':255, 'minor is tick':True, 'minor width':0.3,

'write text': True,
'outline': (224, 224, 224),
'width':

0.8, 'outline':"'lightblue',
'font': aggdraw.Font ('white',
font dir + 'DejaVuSerif.ttf', opacity=255, size=30)}},
decorate={"'decorate': [
{'logo': {'logo path': logo dir +

'NCMRWF.png', 'height': 122, 'bg': 'white',
'bg opacity': 255, 'align':
{'top bottom': 'top', 'left right': 'left'}}},
{'"text': {'txt': '\n ' + platform name +

': avhrr-3\n' + str(start time),

'align': {'top bottom': 'top',
'left right': 'left'},

'font': font dir +
'DejaVuSerif.ttf’,

'font size': 32, 'height': 30,

'bg': 'yellow', 'bg opacity':

170, 'line': 'blue'}},
{'logo': {'logo path': logo dir +

'imdlogo.jpg', 'height': 120, 'bg': 'white',

'bg opacity': 255, 'align':
{'top bottom': 'top', 'left right': 'right'}}}

1)

else:

print ("Skipped")
EOF

37

Annexure-VII: aapplc_quicklook.py

Python script to plot level 1c/1d hdf5 files of AMSU and MHS channels
Brightness temperatures.
#!/usr/bin/env python

"""SId: aapplc_quicklook.py 626 2019-03-12 10:37:57Z frna $

Quicklook display of AAPP level 1c/1d hdf5 data from sounders

Input: AAPP .h5 file

Output: To screen or png file or both

Projection: Plate Carree (i.e. equirectangular, true at equator)
Requirements: python2.7 or 3.x, with numpy, matplotlib, hbpy, cartopy.

If you don't have cartopy, comment out the lines that refer to ccrs; it
will still display the BT data.

For usage instructions, type
aapplc quicklook.py -h

Works with AAPP-generated llc.h5 or 11d.h5 files (see convert to hdfb),
for instruments such as:
AMSU, MHS, HIRS, ATMS, MWHS2, MWTS2, IRAS, CrIS, IASI

BT will be displayed if available, otherwise radiance (CrIS) or scaled
radiance (IASI)

COPYRIGHT

This software was developed within the context of the EUMETSAT
Satellite

Application Facility on Numerical Weather Prediction (NWP SAF), under
the

Cooperation Agreement dated 7 December 2016, between EUMETSAT and the

Met Office, UK, by one or more partners within the NWP SAF. The
partners

in the NWP SAF are the Met Office, ECMWF, DWD and MeteoFrance.

Copyright 2018, EUMETSAT, All Rights Reserved.

History:
Version Date Comment

38

1.0 11/03/2019 1Initial. NCA

Edited by: Sateesh, Srinivas Desamsetti; NCMRWEF.
03/June/2020

mwoan

import numpy as np

import numpy.ma as ma

import hbpy as h5

import matplotlib.pyplot as plt

import sys

import cartopy.crs as ccrs

from argparse import ArgumentParser

from mpl toolkits.basemap import Basemap

parser = ArgumentParser ()

parser.add argument ("-i", "--in", required=True, dest="inputfile",
help="input h5 file")

parser.add argument ("-c", "--channel", dest="channel", default="1",

help="Channel to display")

parser.add argument ("-r", "--range", dest="latlonrange", default='-180
180 -90 90', help="geographical limit: 'x0 x1 y0 yl', default '-180 180
-90 90'"M)

parser.add argument ("-s", "--symsize", dest="symsize", default=4,
help="symbol size, default 4")

parser.add argument ("-nd", "--no display", dest="display image",
action="store false", default=True, help="don't display image on
screen")

parser.add argument ("-ns", "--no save", dest="save image",
action="store false", default=True, help="don't save image")
parser.add argument ("-a", "--auto", dest="auto region",
action="store true", default=False, help="auto range for lat/lon")
parser.add argument ("-H", "--high resolution", dest="high res",

action="store true", default=False, help="high resolution coastline")
args = parser.parse_args ()

Read arrays from h5 file

fid = hb5.File(args.inputfile, 'r'")

group = fid['/"']

LATITUDE = 1.0E-4*np.ma.array(group['Geolocation/Latitude'])
LONGITUDE = 1.0E-4*np.ma.array(group|'Geolocation/Longitude'])
btok = "/Data/btemps" in fid

radok = "/Data/radiance" in fid

39

scalradok = "/Data/scalrad" in fid
if btok:
print ("Reading Data/btemps"™)
BT = 1.0E-2*np.ma.array(group|'Data/btemps'])
elifradok:
print ("Reading Data/radiance")
BT = 1.0E-4*np.ma.array(group|'Data/radiance']) #Convert to
mW/m"~2/sr/cm”-1
elifscalradok:
print ("Reading Data/scalrad")
BT = 1.0*np.ma.array(groupl['Data/scalrad']) #no scaling for
scalrad
fid.close ()

BT = ma.masked where (BT <= 10.0, BT)
Extract the required channel

if (len(BT.shape) == 2):

image array = BT[:,int (args.channel)-1]
elif (len(BT.shape) == 3):

image array = BT[:,:,int (args.channel) -1]
elif (len(BT.shape) == 4):

image array = BT[:,:,:,int (args.channel)-1]

Convert the lat/lon bounds to an array

if args.auto region:
latlonrange = np.fromstring ("0 0 0 0", dtype=float, sep=' ")

latlonrange[0] = np.amin (LONGITUDE)

latlonrange[l] = np.amax (LONGITUDE)

latlonrange[2] = np.amin (LATITUDE)

latlonrange[3] = np.amax (LATITUDE)

else:

latlonrange = np.fromstring(args.latlonrange, dtype=float, sep=' ')

m = Basemap (projection='cyl', resolution='l',llcrnrlat=latlonrangel[2],
urcrnrlat = latlonrange[3],llcrnrlon= latlonrange[0], urcrnrlon =
latlonrange[1])

lon = LONGITUDE

lat = LATITUDE

data = image array
R EEEEEE L
mask = ((LONGITUDE >= latlonrange[0]) & (LONGITUDE <= latlonrange[l])

40

&

(LATITUDE >= latlonrange[2]) & (LATITUDE <= latlonrange[3])
(image array>= 0))
LATITUDE=LATITUDE [mask]
LONGITUDE=LONGITUDE [mask]
image array = image_ array[mask]

Change the default 8x6 inch plot
fig size = plt.rcParams["figure.figsize"]

fig size[0] = 18
fig size[l] = 9
plt.rcParams["figure.figsize"] = fig size

Plot the map
ax = plt.axes (projection=ccrs.PlateCarree())
ax.set extent (latlonrange,crs=ccrs.PlateCarree())
if args.high res:
ax.coastlines ('50m")
else:
ax.coastlines|()
gl = ax.gridlines(crs=ccrs.PlateCarree(), linewidth=1,
color='gray', linestyle='--', draw labels=True)
gl.xlabels top = None

Plot the data

cmap="Jjet" #alternative: "RdBu r"

#plt.scatter (LONGITUDE, LATITUDE, s=int (args.symsize),c=image array,
marker="o", 1lw=0, cmap=cmap)
#plt.contourf (LONGITUDE, LATITUDE, image array)

m.pcolormesh (lon, lat, data, latlon=True, cmap='jet')
plt.title(args.inputfile)

Draw the colour bar

cbar = plt.colorbar (orientation="vertical')

if btok:

cbar.ax.set ylabel ('Channel '+args.channel+' BT (K)')
elifradok:

cbar.ax.set ylabel ('Channel '+4args.channel+' radiance
(mW/m$"2$/sr/cn$~{-1}$)")

elifscalradok:

cbar.ax.set ylabel ('Channel '+args.channel+' scaled radiance')
Save or display image

if args.save image:

outfile=args.inputfile+" "+args.channel+".png"
plt.savefig(outfile)

print (("created "+outfile))

41

&

Annexure-VIII: run_plot_time_delays.sh

#!/bin/bash

Data monitoring master submission script

set -x

export DATAD=/home/hrpt incois

export
OUTDIR=/home/satviz/hrpt noaa/processing hrpt data/plots/data recep dela
Yy

export SRC=/home/satviz/hrpt noaa/processing hrpt data/src

export WRK=/scratch/${LOGNAME}/tmp/aapp/delay plot

module load gnu/rpackages/3.4.4

mkdir -p SWRK ; cd SWRK
cp $SRC/plt delay.r
cp $SRC/plt delay mon.r

#cdate=20200518
cdate="date +%Y%m%d"
dd=2 #2-days ago

rdate="date -d "$cdate - ${dd} days" +%Y¥Y%m%d"
sdate="date -d "Scdate - ${dd} days" +%Y-%m-%d’
year="date -d "S$Scdate - ${dd} days" +%Y°
mon="date -d "S$cdate - ${dd} days" +%m"
day="date -d "$cdate - ${dd} days" +%d°
outdt="date -d "S$cdate - ${dd} days" +%Y-%m’

echo "Processing Date - S$rdate"

1s -1 SDATAD/S${year}.${mon}S${day}.* > tmp.txt
/home/apps/SiteSoftwares/gnu/R.3.4.3/bin/Rscriptplt delay.r $sdate
export OUTD=$OUTDIR/Soutdt ;mkdir -p $OUTD

mv out.png S$SOUTD/hrpt time delay ${rdate}.png

Generate monthly time delay figures

if [$day -eqg 3]; then

dd=38 #2-days ago

rdate="date -d "$cdate - ${dd} days" +%Y%b"
sdate="date -d "S$cdate - ${dd} days" +%b-%Y"
year= date -d "S$cdate - ${dd} days" +%Y°
mon="date -d "S$cdate - ${dd} days" +%m"
outdt="date -d "S$cdate - ${dd} days" +%Y-%m"

42

1s -1 $DATAD/S${year}.${mon}??.* > tmp.txt
/home/apps/SiteSoftwares/gnu/R.3.4.3/bin/Rscriptplt delay mon.r $sdate
export OUTD=S$OUTDIR/Soutdt ;mkdir -p $OUTD

mv out.png $OUTD/hrpt time delay S${rdate}.png

fi

set +x

43

Annexure—IX: plt_delay.r

Data monitoring script - will run with R software
library(stringr)

args=commandArgs (trailingOnly=TRUE)

system ("export TZ=UTC")

ss <- read.csv(file="./tmp.txt", header=F)

ss$sdate<- substr(ss$vl,43,48) # system date/reception date
ss$stime<- substr(ss$vl,50,54)

ssSrdate<- substr(ss$Vl,74,82) # real date/file date
ssSrtime<- substr(ss$vl, 84,89)

ss$file<- substr(ss$vl,56,115)

ss$file?2 <- substr(ss$Vvl,84,89)

ss$filel <- format (as.POSIXct(ss$file2, "$H%M%S", tz="UTC"),"%$H:%M:%S")
ss$file<- paste(ssSfilel,str sub(ss$file, str length(ss$file)-6, -
1) , Sep:"_")

ssSrdatetime<- as.POSIXct (paste(ssSrdate,ssSrtime, sep=""),
"%Y.sm$ASHIMES", tz="UTC")
ss$sdatetime<- as.POSIXct (paste(ss$Ssdate,ssSstime, sep=" "), "%b %d

$H:%M", tz="Asia/Calcutta")
ssSdiff<- difftime (ss$sdatetime, ssSrdatetime,units="hours")
plotname = "./out.png"

png (plotname,width = 5*300, height = 6*300, res=150)

par (mar=c(4,10,2,2))

barplot (as.numeric (ss$diff),names.arg=ss$file,horiz=TRUE,density=10,xlab
="Time (hours)", font.axis=2,main=paste ("HRPT Data Delay at NCMRWE : ",
args[1l],sep=""),las=1,inside = TRUE,cex.axis=1.5, cex.names=1.2, cex.lab
= 1.8, cex.main=1.8)

Add vertical lines at 30 min and 1 hour

abline (v=c(0.5,1), col=c("blue","red"), lty=c(l,2), lwd=c(l,2))
dev.off ()

quit ()

44

