A utility for the vertical interpolation of UM sigma level

fields to height above ground

Mansi Bhowmick, A. Jayakumar, Saji Mohandas and T.J. Anurose

August 2024

A utility for the vertical interpolation of UM sigma level fields to
height above ground

Mansi Bhowmick, A. Jayakumar, Saji Mohandas and T.J. Anurose

August, 2024

National Centre for Medium Range Weather Forecasting
Ministry of Earth Sciences

A-50, Sector 62, Noida-201 309, INDIA

Ministry of Earth Sciences

National Centre for Medium Range Weather Forecasting

Document Control Data Sheet

Name of the Institute

National Centre for Medium Range Weather Forecasting

Document Number

NMRF/TR/07/2024

Date of Publication

August 2024

AW

Title of the document

A utility for the vertical interpolation of UM sigma level
fields to height above ground.

[,

Type of the document

Technical Report

Number of pages,
figures, and Tables

13 Pages, 6 Figures

Authors

Mansi Bhowmick, A. Jayakumar, Saji Mohandas and T.J.

Anurose

Originating Unit

National Centre for Medium Range Weather Forecasting
(NCMRWF)

Abstract (brief)

NCMRWF Unified Model (NCUM) forecast
products can be directly output with user-defined spatial or
temporal specifications. However, vertical interpolation
from the native hybrid levels is needed to get the values at
required special height levels. There is a large demand from
the various end-users for many model parameters at non-
conventional or multiple near-surface and boundary levels.
The python based utility used so far for vertical interpolation
using the generic height levels is having many limitations
and is found to be less accurate. This report describes a new
post-processing utility which involves interpolation of
meteorological parameter values from model levels to
regular height levels above ground level as required by
various stakeholders and user community. It is also suitable
for the direct comparison of model output profiles with
Radar and Radio-sonde data. The utility uses interpolation
based on exner height and is found to be well matching with
the native model levels, as demonstrated in this document.

10

References

2

11

Security classification

Unrestricted

12

Distribution

General

Table of contents

S.No. Title Page no.

Abstract 1
1. Introduction 2
2. Interpolation method 3
3. Verification 4
3.1 | Location-specific global and regional profiles 4
3.2 | Area average regional profiles for different

topographic conditions 5
3.3 | Spatial verification of speed and direction for 10m

and 50m wind fields 6
4. Concluding remarks 8
5. References 9
6. Acknowledgements 9

Appendix 1 10

Appendix 2 11

ABSTRACT

NCMRWEF Unified Model (NCUM) forecast products can be directly output with user-
defined spatial or temporal specifications. However, vertical interpolation from the native
hybrid levels is needed to get the values at required special height levels. There is a large
demand from the various end-users for many model parameters at non-conventional or multiple
near-surface and boundary levels. The python based utility used so far for vertical interpolation
using the generic height levels is having many limitations and is found to be less accurate. This
report describes a new post-processing utility which involves interpolation of meteorological
parameter values from model levels to regular height levels above ground level as required by
various stakeholders and user community. It is also suitable for the direct comparison of model
output profiles with Radar and Radio-sonde data. The utility uses interpolation based on exner
height and is found to be well matching with the native model levels, as demonstrated in this

document.

R

ST HegH 3afy HH qaigHe $g gRpEs Hisd (TTIYUH) YaigAH IdTal &I
SUANTHAT gRT TR RIS 3ryaT SRRt fafkrydreif & wr A em3eye fovar o
qhdl 81 gIalc, avged Ry Fdls Wl R AF U &R & ol Jd JhR TRI 4
SR UAY BT RIS Bkl 6| TR-URURS A1 Hs Hdhe-9ds SR ST TR IR B
Tisd Hues! & forw faftyd sifaw-Iuwaedfst I sSt AT 81 MM $HaTs TRl &1
JUANT FRb Sea1eR Y&T & 1T 3@ db SUAN &1 ST arell U= STema Suaifar &
Fs T § 3R U8 ©H Iie UTs 718 3| T8 RO T =18 U0l & §1g & ST
o1 gl et g1 39 RO H faftrst fedure! iR Sudieral TS gRT 3Tavgd Hisd
W § AR T TR ¥ SW FEfE SR TR ae aed gt Refter gt &
A T B T8 TSR 3R ISA-TIE ST & Iy AT 3M3eye Wbrga oI Hfeh
g & fore +ff Iuged 8 | ST TaR 3aTs & YR TR 3eUIAR &1 YT Sl
2 U1 S o ATSa WRI & T1Y 33} kg A A W1l U UTT T © (ST fob Tt feama
TR

1. INTRODUCTION

The operational NWP products in NCMRWEF are generated either at model levels that
is sigma/rho levels or standard pressure levels. The model levels are terrain following height
levels but have irregular intervals and non-standard height values above ground/sea level like
2.5m, 11.07m, 26.79m, 49.64m, 79.64m, 116.8m, 161.1m and so on. Thus, for application
purposes data at model levels are not useful as such. Noting the request from the wind energy
sector and utilisation of NWP products by the Army for artillery firing system, a need arose to
provide products at well-resolved regular height levels in the boundary layer. Here regular
height levels are referred to as levels like Sm, 10m, 30m, 50m, 70m, 100m, 150m, 200m, 250m,
300m, 350m, 400m and so on.

The existing operational version of the vertical interpolation method (Height-Based
Interpolation termed as HBInterp from here onwards) interpolates model variables to regular
height levels using a Python-based stratify function from the SciKit tools. The HBInterp
method has successfully interpolated various variables to regular height levels till it is tested
for wind speed in the boundary layer (Figure 1) where it is unable to produce the expected
results. Therefore, the current work documents the development of a new vertical interpolation

method based on exner height (termed as EBInterp).

HBInterp

“|— EBinterp
1800 ——— model levels|

1500 —

1200 —

Height (m)

900 —

600 —

Wind Speed (m/s)

Figure 1: Comparison of wind speed profile in the boundary layer over Devlali using height-based and
exner height-based interpolation.

2. INTERPOLATION METHOD

The formula used (eqn 1) for the exner height-based vertical interpolation method
(EBInterp), is described below. The formula is extracted from the UKMO model code used to
compute 50m wind components. The subroutine (vert_interp mdi) in the model code can be
found at path fcm make um/extract/um/src/control/grids/vert interp mdi.F90. The call
location of the subroutine is fem make um/ extract/ um/ src/ atmosphere/
dynamics_diagnostic/ dyn diag.F90. This method uses cubic interpolation but instead of
height, it uses exner height (x/ and x2). A schematic of model height levels, exner height and
regular height levels is shown in Figure 2. In the schematic, the red line indicates the desired
regular height level and the dashed black lines denote the model height levels. Here, it is worth

mentioning that interpolation is not possible below the first model level (ho).

———————————— hﬂ’ UD

A S T e e Topography

Figure 2: Schematic of model height levels (black) and required regular height levels (red).

The wind at required height above ground (U60) is derived as,

_ [EZeo—x1)uz]-[(zeo—x2)u4]
Ugo = — (eqn. 1)

Where,

Zgo = height of desired level (e.g. 60m)

Ugo = U component of wind at desired level
ho_height of first model level

h,_height of model level, below desired level
h,_ height of model level, above desired level
x, = exner height = hy — h,

X, = h, — hy

u, = U component of wind at model level

Appendix 1 describes the function call, arguments and return value. Appendix 2 lists the

excerpts from the main python code.

3. VERIFICATION

The results of the EBInterp interpolation code are tested for location-specific, area-
averaged and spatially for different types of orographic conditions such as inland, coast and
over oceanic regions for both global (NCUM-G) and regional (NCUM-R) operational model
simulations. The randomly chosen test date for all the evaluations is 22 Nov 2023 00UTC.
The observed vertical interpolation results for temperature and winds are captured reasonably
well for location-specific (Figure 3) and small-area average cases (Figure 4). To capture
inversions better using the EBInterp method, the resolution of the vertical coordinate should
be taken high. The spatial plot of the 10m and 50m wind speed and direction are shown in
Figure 5.

3.1 Location-specific global and regional profiles
The station selected for the comparison of vertical interpolation of temperature and U and V
components of the wind field from global and regional UM is Bhopal. Figure 3 shows quite

good similarity between the global and regional fields and temperature curves from model and

4

EBInterp methodology are exactly overlying with each other, while wind fields show very rare

appearances of dashed curves with marginal differences with the solid curves.

Height (km)

Height {km)

a) Global b) Global c) Global
1 P | 1 1 . Il 1 L 1 1 1
- 18 - 18 = -
- 15 - 15 > =
- E 12 - E 2o -
= L
£)
- e - Lz
I =
E 6 L 6 - L
— Model Lavels = 3 - 3~ [~
—_— - EBIMerp
a T T T T T 0 T T T 0 T T T T T T
180 200 220 240 260 280 300 0 10 20 30 40 0 3 6 9 12 15 18 21
Temperature (K) U Wind Speed (m/s) V Wind Speed (m/s)
d) Regional e) Regional f) Regional
1 L 1 | 1 1 Il 1 1 1
- 18 - 18 -
- 15 = 15+ ~
- E 12 - E 12 -
= =
£ 5
Fre 97 g %7 r
I =
L 6 L 6 - -
I 3 - 3 L
0 ¥ | S | L% I i § L) T 0 i) ! R T L AL 0 T L | L T T T
180 200 220 240 260 280 300 0 10 20 30 40 0 3 6 9 12 15 18 21

Temperature (K)

U Wind Speed (m/s)

V Wind Speed (m/s}

Figure 3: Model level and regular height level interpolated tropospheric profiles of temperature, u-wind
speed and v-wind speed over Bhopal (23.26 °N/77.416 °E) from NCUM-G (Global) and NCUM-R

(Regional).

3.2 Area average regional profiles for different topographic conditions
Area average (1° X 1°) locations located near Bhopal (23.26 °N/77.416 °E), Devlali (19.806
°N /73.776 °E) and Bay of Bengal (13 °N/ 88 °E) point are selected for deriving vertical profiles

from the regional UM. The vertical profiles in Figure 5 show fairly useful similarities in

temperature and wind speed.

a) Bhopal b) Bhopal
I 1 L I 1 1 L 1
1800 = 1800 -
1500 1500 -
E 1200 e 1200 =
5 £
@ 900 Fg %00 S
T I
600 F 600 ~
300 H —— Model Level r 300 -
— - EBinterp
0 T T T f T T 0 T T T T
250 280 270 2BO 290 300 310 320 0 2 4 [8 0
Temperature (K) Wind Speed (m/s)
c) Devlali d) Devlali
s sl ey PR | PRS INRNEE A A Y P | PR | -
1800 r 1800 -
1500 r 1500 = -
B 1200 = = E 1200 -
s =)
T 900 o F g %0 -
X o
600 r 600 | =
300 r 200 - -
o RS R T T T 0 T T T T
250 260 270 2BO 290 300 310 320 0 2 4 6 8 10
Temperature (K) Wind Speed (m/s)
e) BoB f) BoB
Il L 1 1 L L 1
1800 r 1800 -
1500 = = 1500 — =
E 1200 E E 1200 -
=) 5
T 900 o rg 900+ -
T i s
600 — = 600 — =
300 F 300 -
0 T T T T 0 T T T T
250 260 270 280 290 300 310 320 0 2 4 6 8 10
Temperature (K) Wind Speed (m/s)

Figure 4: Area averaged (1°X1°) EB interpolated and model height level boundary layer profiles of
temperature, and wind speed over (a,b) Bhopal (Inland), (c,d) Devlali (Near west coast) and (e,f) Bay
of Bengal (BoB, Ocean) using NCUM-R.

3.3 Spatial verification of speed and direction for 10m and 50m wind fields
To verify the spatial distribution of 10m and 50m wind derived from the utility against

the model direct diagnostic output, Figure 5 and 6 displays the comparison for wind speed and
direction from global and regional models. The output is well matching in general
characteristics and patterns with each other. There are very few isolated pixels featuring

slightly high peaks in EBInterp output compared with model output and can be ignored.

(a) 10m wind speed model

. |
(¢) 10m wind direction model

N
360
325
300
275
250
225
200
150
100

75

25

5
7320 73.40 7360 7380

o @ o~

IS

(b) 10m wind speed EBinterp

7320 7340 7360 7380

(d) 10m wind direction EBInterp

198

19.6

19.4

192

73 7340 Tie0 7380

Figure 5: Comparison of 10-meter wind speed and direction from NCUM-R model and EBInterp
interpolation near the location west coast, Devlali (19.806 °N/ 73.776 °E).

(a) 50m wind speed (b) 50m wind speed

19.8

19.6

19.4

19.2

7320 73.40 7360 7180 7320 7340 7360 Ti80

(c) 50m wind direction (d) 50m wind direction

198

196

192

Figure 6: Comparison of 50-meter wind speed and direction from NCUM-G model and EBInterp
interpolation near the location west coast, Devlali (19.806 °N/ 73.776 °E).

4. CONCLUDING REMARKS

An exner height-based interpolation method is developed as a post-processing utility using the
50m interpolation method and tested for various topographic conditions (Figure 4). Satisfactory
results are observed related to point (Figure 3) and area average vertical profiles (Figure 4);
however, some trivial discrepancies are noted in the spatial map of wind speed and direction
in interpolated values when compared with model output wind fields at 10m and 50m (Figure
5 and Figure 6). This utility is soon implemented operationally within the software designed

for the stakeholder’s applications.

5. REFERENCES

The NCAR command Language (Version6.6.2)[Software],2019. Boulder, Colorado:
UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XHS5

Terry Davies (2023) Dynamical and Physical Diagnostic Calculations. Unified Model
Documentation Paper 080,MetOffice, UK .

6. ACKNOWLEDGEMENTS

We sincerely acknowledge NCAR Command Language software for visualisation and Python
for data analysis. We sincerely thank T. Arulalan for scripting the previous operational version

of the present utility, part of which is used here.

APPENDIX 1
Description
Interpolation from model levels to desired height levels above ground level. The code is

parallelized in time coordinate so requires mpi submission of job.

Load modules

module load gnu/pythonpackages/2.7.9 gnu/packagesuite/1
module load gnu/user-specific/rmedtoolbox _modules/1
module load gnu/dask/1.1.4

module load gnu/toolz/0.9.0

Prototype
sys.path.append('path to mI2hl_interp.py")
from mi2hl_interp import modelLevel2RegularHeight

newCube=modelLevel2RegularHeight(cube,targetHeight)

Arguments

cube: It should be a 4-d python datacube with all its attributes including level height.
cube Dimensions (time,model levels,latitude,longitude)

target Height: 1-d array with desired height levels in unit, meter e.g.
[20,30,50,70,100,150,200,300,400,800,1000,2500,5000,8000,10000]

Return value

Return value is a 4-d cube with dimensions (time,height,latitude,longitude)

10

APPENDIX 2

##Interpolating from model levels to regular height levels *** ***x%*
Script prepared by Mansi Bhowmick with the guidance from Dr.T.J.
Anurose and Dr.A. Jayakumar

#HH##

##For more details please contact mansibhowmick@gmail.com or
Jkumar@ncmrwf.gov.in

#Dec, 2023

#Import modules

import numpy, iris

from cf units import Unit
import os, sys

import iris

import numpy as np

from iris.coords import DimCoord
from iris.cube import Cube
from netCDF4 import Dataset
import netCDF4 as nc

import dask

#input 3D cube (without time coordinate)
#output 3D cube (data only)

@dask.delayed
def ht converter(field data,ht desired):

z=np.array (ht desired)

bl N=z.shape[0]

nlat=field data.shape[1l]

nlon=field data.shape[2]

u _desired = np.zeros (shape=(bl N,nlat,nlon),dtype=float)
z desired np.zeros (shape=(bl N,nlat,nlon),dtype=float)

#Creating 3D array from 1D array
for 1 in range(0,bl N):
for m in range(0,nlat) :
for n in range (0,nlon):
z desired[i,m,n]=z[i]

#compute exner height x

ht=field data.coord('level height') .points
#print 'Model heights'

#print ht

x=ht-ht[0]

M=ht.shape[0]

#Creating 3D array from 1D array
x 3d = np.zeros(shape=(M,nlat,nlon),dtype=float)
for i in range(0,M) :

for m in range(0,nlat) :

for n in range (0,nlon):

11

x 3d[i,m,n]=x[i]
field data=field data.data

#cubic interpolation in 3D using exner height
for 1 in range(0,bl N):
for k in range(0,M) :
if (ht[k] > z[1]):
levl=k-1
lev2=k
if (levl<O0):
levl=lev2
print "Interpolation Error: First regular height level is less
than first model height level"
print "First model height level =",ht[levl]
sys.exit ()
break
u desired[i,:,:]=(((z_desired[i,:,:]
x 3d[levl,:,:])*field data[lev2,:,:])-
x 3d[lev2,:,:])*field datallevl,:,:]))
x 3d[levl,:,:])

((z_desired[i,:,:]-
/(x _3d[lev2,:,:]-

return u desired

def modellevel2?2RegularHeight (cube, targetHeight) :
#Parallelise the time coordinate using dask
task list=[]

nrecord=cube.shape[0] #time coordinate

for i in range(nrecord) :
u_desired=ht converter (cube[i,:,:,:],targetHeight)
task list.append(u_desired)

task=dask.delayed() (task list)
compute u=task.compute ()

#newCube is 4D data
newCube=np.array (compute u)

appending coordinates---------
co = cube.dim coords
axidx = 0
for 1 in range(len(co)):
if coli].standard name == 'model level number':
axidx = 1
break
newCube = numpy.ma.masked invalid (newCube)
print "converted to", newCube.data.shape
attr = cube.attributes
lname = cube.long name
sname = cube.standard name
cm = cube.cell methods[0] if cube.cell methods else None
unit = cube.units

12

new coordinate
height = iris.coords.DimCoord(targetHeight, standard name='height',
units=Unit('m'), attributes={'positive': 'up', 'comments': 'height
above orography'})

numpy.ma.set fill value (newCube, 9.999e+20)

create new cube

newCube = iris.cube.Cube (data=newCube, units=unit,

standard name=sname,

long name=lname, attributes=attr)#,

cell methods=(cm,))

add dimension coords

newCube.add dim coord(cube.coord('time'), O0)
newCube.add dim coord(height, 1)

newCube.add dim coord([-2]1, 2) # latitude

newCube.add dim coord([-1], 3) # longitude

add aux coords

newCube.add aux coord(cube.coord('forecast period'), 0)
newCube.add aux coord(cube.coord('forecast reference time'))

coOo
coOo

#print newCube
print 'Successful execution of ml2hl interp.py'
#return 4D cube
return newCube

13

