
i

 August 2024

 NMRF/TR/07/2024

 T

EC
H

N
IC

A
L

R
EP

O
R

T

National Centre for Medium Range Weather Forecasting

Ministry of Earth Sciences, Government of India

A-50, Sector-62, NOIDA-201 309, INDIA

A utility for the vertical interpolation of UM sigma level

fields to height above ground

Mansi Bhowmick, A. Jayakumar, Saji Mohandas and T.J. Anurose

ii

A utility for the vertical interpolation of UM sigma level fields to

height above ground

Mansi Bhowmick, A. Jayakumar, Saji Mohandas and T.J. Anurose

August, 2024

National Centre for Medium Range Weather Forecasting

Ministry of Earth Sciences

A-50, Sector 62, Noida-201 309, INDIA

iii

Ministry of Earth Sciences

National Centre for Medium Range Weather Forecasting

Document Control Data Sheet

1 Name of the Institute National Centre for Medium Range Weather Forecasting

2 Document Number NMRF/TR/07/2024

3 Date of Publication August 2024

4 Title of the document A utility for the vertical interpolation of UM sigma level

fields to height above ground.

5 Type of the document Technical Report

6 Number of pages,

figures, and Tables

13 Pages, 6 Figures

7 Authors Mansi Bhowmick, A. Jayakumar, Saji Mohandas and T.J.

Anurose

8 Originating Unit National Centre for Medium Range Weather Forecasting

(NCMRWF)

9 Abstract (brief) NCMRWF Unified Model (NCUM) forecast
products can be directly output with user-defined spatial or
temporal specifications. However, vertical interpolation
from the native hybrid levels is needed to get the values at
required special height levels. There is a large demand from
the various end-users for many model parameters at non-
conventional or multiple near-surface and boundary levels.
The python based utility used so far for vertical interpolation
using the generic height levels is having many limitations
and is found to be less accurate. This report describes a new
post-processing utility which involves interpolation of
meteorological parameter values from model levels to
regular height levels above ground level as required by
various stakeholders and user community. It is also suitable
for the direct comparison of model output profiles with
Radar and Radio-sonde data. The utility uses interpolation
based on exner height and is found to be well matching with
the native model levels, as demonstrated in this document.

10 References 2

11 Security classification Unrestricted

12 Distribution General

iv

Table of contents

S.No. Title Page no.

 Abstract 1

1. Introduction 2

2. Interpolation method 3

3. Verification 4

3.1

3.2

3.3

Location-specific global and regional profiles

Area average regional profiles for different

topographic conditions

Spatial verification of speed and direction for 10m
and 50m wind fields

4

5

6

4. Concluding remarks 8

5. References 9

6. Acknowledgements 9

 Appendix 1 10

 Appendix 2 11

1

ABSTRACT

NCMRWF Unified Model (NCUM) forecast products can be directly output with user-

defined spatial or temporal specifications. However, vertical interpolation from the native

hybrid levels is needed to get the values at required special height levels. There is a large

demand from the various end-users for many model parameters at non-conventional or multiple

near-surface and boundary levels. The python based utility used so far for vertical interpolation

using the generic height levels is having many limitations and is found to be less accurate. This

report describes a new post-processing utility which involves interpolation of meteorological

parameter values from model levels to regular height levels above ground level as required by

various stakeholders and user community. It is also suitable for the direct comparison of model

output profiles with Radar and Radio-sonde data. The utility uses interpolation based on exner

height and is found to be well matching with the native model levels, as demonstrated in this

document.

सारांश

रा ीय म म अविध मौसम पूवानुमान क यूिनफाइड मॉडल (एनसीयूएम) पूवानुमान उ ादो ं को
उपयोगकता ारा प रभािषत ािनक अथवा अ ायी िविश ताओ ंके साथ सीधे आउटपुट िकया जा
सकता है। हालाँिक, आव क िवशेष ऊंचाई रो ंपर मान ा करने के िलए मूल संकर रो ं से
ऊ ाधर ेप की आव कता होती है। गैर-पारंप रक या कई िनकट-सतह और सीमा रो ंपर कई
मॉडल मापदंडो ं के िलए िविभ अंितम-उपयोगकताओ ं से बड़ी मांग है। सामा ऊँचाई रो ंका
उपयोग करके ऊ ाधर ेप के िलए अब तक उपयोग की जाने वाली पायथन आधा रत उपयोिगता म
कई सीमाएँ ह और यह कम सटीक पाई गई है। यह रपोट एक नई सं रण के बाद की उपयोिगता
का वणन करती है। इस रपोट म िविभ िहतधारको ंऔर उपयोगकता समुदाय ारा आव क मॉडल

रो ं से लेकर जमीनी र से ऊपर िनयिमत ऊंचाई रो ं तक मौसम संबंधी पैरामीटर मू ो ं का
अंतवशन शािमल है। यह रडार और रेिडयो-सोडें डेटा के साथ मॉडल आउटपुट ोफाइल की सीधी
तुलना के िलए भी उपयु है। उपयोिगता ए नर ऊंचाई के आधार पर इंटरपोलेशन का उपयोग करती
है तथा इसे मूल मॉडल रो ंके साथ अ ी तरह से मेल खाते ए पाया गया है (जैसा िक यहां िदखाया
गया है)।

2

1. INTRODUCTION

The operational NWP products in NCMRWF are generated either at model levels that

is sigma/rho levels or standard pressure levels. The model levels are terrain following height

levels but have irregular intervals and non-standard height values above ground/sea level like

2.5m, 11.07m, 26.79m, 49.64m, 79.64m, 116.8m, 161.1m and so on. Thus, for application

purposes data at model levels are not useful as such. Noting the request from the wind energy

sector and utilisation of NWP products by the Army for artillery firing system, a need arose to

provide products at well-resolved regular height levels in the boundary layer. Here regular

height levels are referred to as levels like 5m, 10m, 30m, 50m, 70m, 100m, 150m, 200m, 250m,

300m, 350m, 400m and so on.

The existing operational version of the vertical interpolation method (Height-Based

Interpolation termed as HBInterp from here onwards) interpolates model variables to regular

height levels using a Python-based stratify function from the SciKit tools. The HBInterp

method has successfully interpolated various variables to regular height levels till it is tested

for wind speed in the boundary layer (Figure 1) where it is unable to produce the expected

results. Therefore, the current work documents the development of a new vertical interpolation

method based on exner height (termed as EBInterp).

3

Figure 1: Comparison of wind speed profile in the boundary layer over Devlali using height-based and
exner height-based interpolation.

2. INTERPOLATION METHOD

The formula used (eqn 1) for the exner height-based vertical interpolation method

(EBInterp), is described below. The formula is extracted from the UKMO model code used to

compute 50m wind components. The subroutine (vert_interp_mdi) in the model code can be

found at path fcm_make_um/extract/um/src/control/grids/vert_interp_mdi.F90. The call

location of the subroutine is fcm_make_um/ extract/ um/ src/ atmosphere/

dynamics_diagnostic/ dyn_diag.F90. This method uses cubic interpolation but instead of

height, it uses exner height (x1 and x2). A schematic of model height levels, exner height and

regular height levels is shown in Figure 2. In the schematic, the red line indicates the desired

regular height level and the dashed black lines denote the model height levels. Here, it is worth

mentioning that interpolation is not possible below the first model level (h0).

Figure 2: Schematic of model height levels (black) and required regular height levels (red).

The wind at required height above ground (U60) is derived as,

𝑢 =
[()] [()]

[]
 (eqn. 1)

4

Where,

𝑧 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 (𝑒. 𝑔. 60𝑚)

𝑢 = 𝑈 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑤𝑖𝑛𝑑 𝑎𝑡 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑙𝑒𝑣𝑒𝑙

ℎ ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 𝑙𝑒𝑣𝑒l

ℎ ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑙𝑒𝑣𝑒𝑙, 𝑏𝑒𝑙𝑜𝑤 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑙𝑒𝑣𝑒𝑙

ℎ ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑙𝑒𝑣𝑒𝑙, 𝑎𝑏𝑜𝑣𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑙𝑒𝑣𝑒𝑙

𝑥 = 𝑒𝑥𝑛𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 = ℎ − ℎ

𝑥 = ℎ − ℎ

𝑢 = 𝑈 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑤𝑖𝑛𝑑 𝑎𝑡 𝑚𝑜𝑑𝑒𝑙 𝑙𝑒𝑣𝑒𝑙

Appendix 1 describes the function call, arguments and return value. Appendix 2 lists the

excerpts from the main python code.

3. VERIFICATION

The results of the EBInterp interpolation code are tested for location-specific, area-

averaged and spatially for different types of orographic conditions such as inland, coast and

over oceanic regions for both global (NCUM-G) and regional (NCUM-R) operational model

simulations. The randomly chosen test date for all the evaluations is 22 Nov 2023 00UTC.

The observed vertical interpolation results for temperature and winds are captured reasonably

well for location-specific (Figure 3) and small-area average cases (Figure 4). To capture

inversions better using the EBInterp method, the resolution of the vertical coordinate should

be taken high. The spatial plot of the 10m and 50m wind speed and direction are shown in

Figure 5.

3.1 Location-specific global and regional profiles

The station selected for the comparison of vertical interpolation of temperature and U and V

components of the wind field from global and regional UM is Bhopal. Figure 3 shows quite

good similarity between the global and regional fields and temperature curves from model and

5

EBInterp methodology are exactly overlying with each other, while wind fields show very rare

appearances of dashed curves with marginal differences with the solid curves.

Figure 3: Model level and regular height level interpolated tropospheric profiles of temperature, u-wind
speed and v-wind speed over Bhopal (23.26 oN/77.416 oE) from NCUM-G (Global) and NCUM-R
(Regional).

3.2 Area average regional profiles for different topographic conditions

 Area average (1o X 1o) locations located near Bhopal (23.26 oN/77.416 oE), Devlali (19.806

oN /73.776 oE) and Bay of Bengal (13 oN/ 88 oE) point are selected for deriving vertical profiles

from the regional UM. The vertical profiles in Figure 5 show fairly useful similarities in

temperature and wind speed.

6

Figure 4: Area averaged (1oX1o) EB interpolated and model height level boundary layer profiles of
temperature, and wind speed over (a,b) Bhopal (Inland), (c,d) Devlali (Near west coast) and (e,f) Bay
of Bengal (BoB, Ocean) using NCUM-R.

3.3 Spatial verification of speed and direction for 10m and 50m wind fields
To verify the spatial distribution of 10m and 50m wind derived from the utility against

the model direct diagnostic output, Figure 5 and 6 displays the comparison for wind speed and

direction from global and regional models. The output is well matching in general

characteristics and patterns with each other. There are very few isolated pixels featuring

slightly high peaks in EBInterp output compared with model output and can be ignored.

7

Figure 5: Comparison of 10-meter wind speed and direction from NCUM-R model and EBInterp
interpolation near the location west coast, Devlali (19.806 oN/ 73.776 oE).

8

Figure 6: Comparison of 50-meter wind speed and direction from NCUM-G model and EBInterp
interpolation near the location west coast, Devlali (19.806 oN/ 73.776 oE).

4. CONCLUDING REMARKS

An exner height-based interpolation method is developed as a post-processing utility using the

50m interpolation method and tested for various topographic conditions (Figure 4). Satisfactory

results are observed related to point (Figure 3) and area average vertical profiles (Figure 4);

however, some trivial discrepancies are noted in the spatial map of wind speed and direction

in interpolated values when compared with model output wind fields at 10m and 50m (Figure

5 and Figure 6). This utility is soon implemented operationally within the software designed

for the stakeholder’s applications.

9

5. REFERENCES

The NCAR command Language (Version6.6.2)[Software],2019. Boulder, Colorado:
UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5

Terry Davies (2023) Dynamical and Physical Diagnostic Calculations. Unified Model
Documentation Paper 080,MetOffice, UK .

6. ACKNOWLEDGEMENTS

We sincerely acknowledge NCAR Command Language software for visualisation and Python

for data analysis. We sincerely thank T. Arulalan for scripting the previous operational version

of the present utility, part of which is used here.

10

APPENDIX 1

Description

Interpolation from model levels to desired height levels above ground level. The code is

parallelized in time coordinate so requires mpi submission of job.

Load modules

module load gnu/pythonpackages/2.7.9 gnu/packagesuite/1

module load gnu/user-specific/rmedtoolbox_modules/1

module load gnu/dask/1.1.4

module load gnu/toolz/0.9.0

Prototype

sys.path.append('path to ml2hl_interp.py')

from ml2hl_interp import modelLevel2RegularHeight

newCube=modelLevel2RegularHeight(cube,targetHeight)

Arguments

cube: It should be a 4-d python datacube with all its attributes including level_height.

 cube Dimensions (time,model_levels,latitude,longitude)

target Height: 1-d array with desired height levels in unit, meter e.g.

 [20,30,50,70,100,150,200,300,400,800,1000,2500,5000,8000,10000]

Return value

Return value is a 4-d cube with dimensions (time,height,latitude,longitude)

11

APPENDIX 2

##Interpolating from model levels to regular height levels *** ****
Script prepared by Mansi Bhowmick with the guidance from Dr.T.J.
Anurose and Dr.A. Jayakumar

##For more details please contact mansibhowmick@gmail.com or
jkumar@ncmrwf.gov.in
#Dec, 2023

#Import modules
import numpy, iris
from cf_units import Unit
import os, sys
import iris
import numpy as np
from iris.coords import DimCoord
from iris.cube import Cube
from netCDF4 import Dataset
import netCDF4 as nc
import dask

#input 3D cube (without time coordinate)
#output 3D cube (data only)

@dask.delayed
def ht_converter(field_data,ht_desired):

 z=np.array(ht_desired)
 bl_N=z.shape[0]
 nlat=field_data.shape[1]
 nlon=field_data.shape[2]
 u_desired = np.zeros(shape=(bl_N,nlat,nlon),dtype=float)
 z_desired = np.zeros(shape=(bl_N,nlat,nlon),dtype=float)

 #Creating 3D array from 1D array
 for i in range(0,bl_N):
 for m in range(0,nlat):
 for n in range(0,nlon):
 z_desired[i,m,n]=z[i]

 #compute exner height x
 ht=field_data.coord('level_height').points
 #print 'Model heights'
 #print ht
 x=ht-ht[0]
 M=ht.shape[0]

 #Creating 3D array from 1D array
 x_3d = np.zeros(shape=(M,nlat,nlon),dtype=float)
 for i in range(0,M):
 for m in range(0,nlat):
 for n in range(0,nlon):

12

 x_3d[i,m,n]=x[i]

 field_data=field_data.data

 #cubic interpolation in 3D using exner height
 for i in range(0,bl_N):
 for k in range(0,M):
 if (ht[k] > z[i]):
 lev1=k-1
 lev2=k
 if (lev1<0):
 lev1=lev2
 print "Interpolation Error: First regular height level is less
than first model height level"
 print "First model height level =",ht[lev1]
 sys.exit()
 break
 u_desired[i,:,:]=(((z_desired[i,:,:]-
x_3d[lev1,:,:])*field_data[lev2,:,:])-((z_desired[i,:,:]-
x_3d[lev2,:,:])*field_data[lev1,:,:]))/(x_3d[lev2,:,:]-
x_3d[lev1,:,:])

 return u_desired

def modelLevel2RegularHeight(cube,targetHeight):
 #Parallelise the time coordinate using dask
 task_list=[]
 nrecord=cube.shape[0] #time coordinate

 for i in range(nrecord):
 u_desired=ht_converter(cube[i,:,:,:],targetHeight)
 task_list.append(u_desired)

 task=dask.delayed()(task_list)
 compute_u=task.compute()

 #newCube is 4D data
 newCube=np.array(compute_u)

appending coordinates---------
 co = cube.dim_coords
 axidx = 0
 for i in range(len(co)):
 if co[i].standard_name == 'model_level_number':
 axidx = i
 break
 newCube = numpy.ma.masked_invalid(newCube)
 print "converted to", newCube.data.shape
 attr = cube.attributes
 lname = cube.long_name
 sname = cube.standard_name
 cm = cube.cell_methods[0] if cube.cell_methods else None
 unit = cube.units

13

 # new coordinate
 height = iris.coords.DimCoord(targetHeight, standard_name='height',
units=Unit('m'), attributes={'positive': 'up', 'comments': 'height
above orography'})
 numpy.ma.set_fill_value(newCube, 9.999e+20)
 # create new cube
 newCube = iris.cube.Cube(data=newCube, units=unit,
standard_name=sname,
 long_name=lname, attributes=attr)#,
cell_methods=(cm,))
 # add dimension coords
 newCube.add_dim_coord(cube.coord('time'), 0)
 newCube.add_dim_coord(height, 1)
 newCube.add_dim_coord(co[-2], 2) # latitude
 newCube.add_dim_coord(co[-1], 3) # longitude
 # add aux coords
 newCube.add_aux_coord(cube.coord('forecast_period'), 0)
 newCube.add_aux_coord(cube.coord('forecast_reference_time'))

 #print newCube
 print 'Successful execution of ml2hl_interp.py'
 #return 4D cube
 return newCube

