

 Utility to convert UM fields
 file output to NCEP GRIB1

format: A user guide

Saji Mohandas

 April 2014

NMRF/TR/01/2014

T
E

C
H

N
IC

A
L

R

E
P

O
R

T

National Centre for Medium Range Weather Forecasting

Earth System Science Organisation

Ministry of Earth Sciences

A-50, Sector 62, NOIDA – 201 309, INDIA

Utility to convert UM fields file output to NCEP

GRIB1 format: A user guide

Saji Mohandas

April 2014

National Centre for Medium Range Weather Forecasting

Earth System Science Organisation

Ministry of Earth Sciences

A-50, Sector 62, NOIDA – 201309, INDIA

S.No.

1 Name of the Institute

National Centre for Medium Range Weather Forecasting
(NCMRWF)

2 Document Number

NMRF/TR/1/2014

3 Date of publication

April 2014

4 Title of the document

Utility to convert UM fields file output to NCEP GRIB1
format: A user guide

5 Type of Document

Technical report

6 No.of pages & figures,
tables

46 pages, 7 Appendices

7 Number of References

2

8 Author (S)

Saji Mohandas

9 Originating Unit

National Centre for Medium Range Weather Forecasting
(NCMRWF), A-50, Sector-62, Noida, Uttar Pradesh

10 Abstract (100 words)

This report is a user guide to a utility script, namely
‘umfld2grib.sh’, which has been developed in-house
keeping in mind the internal users who finds it difficult to
deal with the UM fields file format for various operational
and research-oriented tasks. The shell script employs
extensively the UM utilities provided by UK Met Office for
the basic manipulations of the UM output files and also
uses the NCEP GRIB1 library installed in IBM Power 6
High Performance Computer at NCMRWF. The script has
been written in a maximum user-friendly way and is able
to perform an optional regridding of the field variables
and the conversion to GRIB1 format using NCEP GRIB
tables. The interpolation of the land-sea mask and many
other types of missing values are taken care of. A large
number of variables have been incorporated with the
corresponding mapping of GRIB codes and short names.
A proxy GRIB code may have to be used at times, if the
code is not available. Commonly used vertical levels are
incorporated and it is easy to include new levels by the
user community. Also included option to extract any
variable by exporting the correct record number.
Maximum flexibility to the user is assured in the script.
This utility will enable the users to generate the UM
output files in GRIB format for use in other user
applications and mesoscale models.

11 Security classification Unrestricted

12 Distribution

General

Contents

 Abstract

1. Introduction ……………………………………. …………………. 1

2. Software requirements…………………………. …………………..2

3. Export variables…….………………………….. ………………..…3

4. Usage details……. ………………………………. ………………....4

5. Examples…………………………………………. ………………12

6. Summary…………………………………………………………15

Disclaimer

References……………………………………………………………..16
Appendix –I.…………………………………………………………..17
Appendix-II……………………………………………………………29
Appendix-III…………………………………………………………..31
Appendix-IV…………………………………………………………..35
Appendix-V……………………………………………………………36
Appendix-VI…………………………………………………………..39
Appendix-VII………………………………………………………….45

Abstract

This report is a user guide to a utility script, namely ‘umfld2grib.sh’, which has

been developed in-house keeping in mind the internal users who finds it difficult to

deal with the UM fields file format for various operational and research-oriented tasks.

The shell script employs extensively the UM utilities provided by UK Met Office for the

basic manipulations of the UM output files and also uses the NCEP GRIB1 library

installed in IBM Power 6 High Performance Computer at NCMRWF. The script has

been written in a maximum user-friendly way and is able to perform an optional

regridding of the field variables and the conversion to GRIB1 format using NCEP GRIB

tables. The interpolation of the land-sea mask and many other types of missing values

are taken care of. A large number of variables have been incorporated with the

corresponding mapping of GRIB codes and short names. A proxy GRIB code may have

to be used at times if the code is not available. Commonly used vertical levels are

incorporated and it is easy to include new levels by the user community. Also included

option to extract any variable by exporting the correct record number. Maximum

flexibility to the user is assured in the script. This utility will enable the users to

generate the UM output files in GRIB format for use in other user applications and

mesoscale models.

1

1. Introduction

 Unified Model (UM) output is in a specific format called fields file (FF) format, which can

be visualized using ‘xconv’ utility which is a free software available on internet. This is an

interactive utility for viewing the contents and optionally converting to a limited number of

formats which includes ‘grads’ and ‘netcdf’. Another option is to convert it into ‘pp’ format

which is handled by IDL, using the UM utility ‘convpp’. The ‘xconv’ functions can be carried out

using a command line utility script namely ‘subset.tcl’. This script is useful for pipeline

production of graphical visualizations of the model output data. However, for archival and data

exchanges to the external users and agencies, there is an operational requirement to convert

the same into some standard data format like, ‘GRIB’ or CF standard ‘netcdf’, which was a

handicap and a teething issue during the initial days of UM activities at NCMRWF. Also there

was a requirement of GRIB formatted data for feeding into other applications and mesoscale

models. To circumvent this problem, UK Met Office provided a UM grib converter based on the

UM utility ‘fieldcalc’, which converts only important parameters into UKMO/ECMWF GRIB

format. A utility was created using this converter, called ‘um2grib.sh’, to extract the limited

number of parameters and reconvert into NCEP GRIB format with or without regridding.

However, it was felt that for other parameters which are not under the scope of ‘um2grib.sh’, a

new utility is to be developed in-house to cater to the needs of the internal users. This report

is a user guide to the new utility script namely ‘umfld2grib.sh’ and describes the usage and

features of the utility and which has almost the same syntax of the arguments as that of

‘um2grib.sh’.

Both utilities are used in the same way and mostly do the same functions. The main

difference is that um2grib.sh first converts an entire set of input file variables it can convert,

using the UM converter and generates a ‘UKMO GRIB’ file with the name ‘<file-name>.grib1’

before subsetting the requested parameter. This does not happen in the case of

‘umfld2grib.sh’, which subsets the parameter and converts to NCEP GRIB format. So the

interpolation option ‘-100’ or ‘-101’ for um2grib.sh (which avoids the first step of conversion of

entire file to UKMO GRIB with the time-expensive UM converter) is not applicable to

‘umfld2grib.sh’. The option of manipulation of the wrong level of specific humidity at 1.5m

height, (due to some apparent bug in UM converter’s stash-to-grib table), mistermed as ‘mb’,

with the ‘-99’ option of level-type is also not required in umfld2grib.sh. The ‘umfld2grib.sh’

utility is given in Appendix-I. The following sections describe the software requirements, the

environment settings, command syntax, usage details and examples with summary.

2

2. Software requirements

The utility is installed in IBM Power 6 HPC, which is based on AIX operating system. The

basic requirement is the installation of NCEP GRIB library. The script also utilizes ‘xlf’ versions

of FORTRAN compiler to compile the source codes and also uses other UNIX based

commands. The installation of the utilities for UM version 7.9 has been carried out on IBM P6

and is being used for dealing with UM FF files (For UM utilities, please refer to Green (2009)

and Robinson (2008)) . Basically the UM utilities used in the scripts are ‘pumf’ utility to get the

details of the UM file and the ‘fieldcalc’ utility to extract a single variable for the requested

STASH code. The freely available executables of ‘xconv’ version 1.91 and the ‘subset.tcl’ with

the minimum regridding resolution modified to ‘0.0001. deg. X 0.0001 deg’ are used to the

convert and optionally regrid to regular latitude-longitude grid for the UM files to netcdf format.

The UNIX commands ‘sed’ and ‘awk’ are used to extract information from the netcdf dump

which also requires ‘ncdump’ utility. A number of utility scripts were created which are the

wrapper shell scripts for the above mentioned UM utilities for different functionalities. The list

of the utility scripts used by umfld2grib.sh and some useful tools with the brief details are

given in Appendix-II. The FORTRAN codes utilizes the library call ‘PUTGB’ to convert to GRIB

format.

A FORTRAN program, namely ‘encgrbll.f’ is used for the conversion to GRIB. A number

of variants of the program are used for data manipulation such as changing the north-south

ordering and handling of missing or masked data, namely ‘encgrbllrev.f’, ‘encgrbllneg.f’,

‘encgrblsm.f’, ‘encgrblsmrev.f’, ‘encgrbllrevneg.f’, encgrblsmneg.f’, encgrblsmrevneg.f’ etc..

The typical FORTRAN codes of encgrbll.f and encgrblsm.f are given in Appendix-III and the all

other programs are very minor modifications of these two with different functions, like

reverting the north-south writing order (rev) or settings for manipulating negative values (neg),

mask and missing values (lsm). The FORTRAN code has to be linked to NCEP grib library.

FORTRAN code uses a template for inputting the PDS/GDS parameters which specifies the

meta-data for the GRIB output. The template named ‘gribheader.txt’ is given in Appendix-IV. It

contains a few parameters which are fixed with respect to the latitude-longitude regular grid

specifications in NCEP grib table. It is to be noted that this template may probably be utilized

or modified by the user to adapt to any grid, any centre and any parameter table version. The

GRIB-name and NETCDF-name for the given STASH code are obtained by the use of a script

called ‘umstashcode.sh’. This script utilizes the NCEP GRIB parameter table

‘permanent.paramtable’ for mapping the STASH and the corresponding GRIB codes. Appendix-

3

V and Appendix-VI lists the ‘umstashcode.sh’ script and ‘paramtable.permanent’ ascii table of

NCEP GRIB codes. These two files are used by umfld2grib.sh to map the STASH code to the

corresponding GRIB code. The latter one contains the list of the standard GRIB parameter

table for NCEP. The additional tables with different table numbers may have to be generated

and used for some special parameters available in other extensions of NCEP GRIB, which

remains yet to be tested.

3. Export variables

If you are an active user of Unified Model, the following two variables might have

already been available exported in your environment or defined in your .profile. if not, you can

give the following examples of export commands to define your UMDIR and TMPDIR paths

before running the utility.

export UMDIR=/gpfs1/home/moum/UM

export TMPDIR=/tmp/$LOGNAME

Along with this, you need to change the PATH of ‘DIRUTIL’ inside the script or export

the same outside the script each time before running the script. Utility directory is the

respository of the all the scripts, source codes, libraries, control files or parameter files and

templates required by the utility. The current version of the script is based on UM version 7.9

and hence by default the directory is named as ‘umutil_7.9’ and preferably located in the

$HOME directory of the user or $UMDIR.

export DIRUTIL=$HOME/umutil_7.9

DIRUTIL is the area containing all and everything required to execute the script

‘umfld2grib.sh’ and also contains many independent utility tools. Another two very important

export variables you need to specify externally each time you run the utility, are (1) for passing

the base date of the UM data file and (2) the full PATH of the data file, as given below.

export PDY=YYYYMMDDHH

export INDIR=’.’

The above statements imply that the base date of the UM file is in the format of year

4

(YYYY) month (MM) date (DD) and hour (HH) and the data file PATH is the current directory. By

default, the INDIR is given as the operational UM output directory and if that is to be redefined,

there is no need to change the path inside the script, but can be exported from outside. While

running the script it lists all export variables being defined in the environment and it has to be

checked carefully by the user during the initial set up of the job. If the INFILE and INDIR are

wrong or non-existent then the script will abort with a message to check PDY, INDIR etc. If the

PDY is not matching with the base date inside the file, it does not abort but will give a message

to warn that the dates do not match but is altered as user-given date.

There are a number of export variables apart from those mentioned above which are

used in umfld2grib.sh which are UNPCK, MISS and RECNO which define the unpacking option,

missvalue and the record number of the parameter inside the UM file. Missvalue is the missing

value being replaced in the data file to deal with the undefined or masked data. Record number

is an optional facility provided to the user to specify the exact record number of the parameter

being processed in the UM file.

4. Usage details

For conversion of UM file to GRIB format, the user needs to access or run only a single

script, namely, ‘umfld2grib.sh’ either by copying from DIRUTIL area or by specifying the full

path like ‘$DIRUTIL/umfld2grib.sh’. Before executing the script, there is a requirement of

defining or exporting at least one variable, namely, ‘PDY’, the base date of the UM file which

needs to be given, in YYYYMMDDHH format. The script accepts a few arguments and runs with

or without all arguments using some default parameters. The user is advised to refer to the

previous section on export variables to understand what are the essential export variables to

be defined before the running of the script.

The two most important variables as mentioned in the previous section to be exported

are PDY and INDIR, for each execution for the script. By default, ‘INDIR’ is set as the full PATH

of the operational area of the UM output file. Supposing that the UM file is lying in the present

working directory, the export statements are

export PDY=YYYYMMDDHH

export INDIR=’.’

5

For executing the script the syntax is

umfld2grib.sh <UM_file> <Var> <fhour> <Time_proc> <T1 T2> <Lev_typ>

 <Lev> <intp> <NX NY XS XE XI YS YE YI>

where,

<UM_file> - The UM Fields File to be converted

<Var> - The STASH name to convert

<fhour> - The forecast time to be extracted in terms of integer hours

 (0 for analysis), -1 for processing all times available in the file

<Time_proc> - Time processing type. 0 for instantaneous or single time level

 1 for two time levels like average or accumulation

<T1 T2> - The first two time levels to be extracted in terms of integer hours.

 If time processing option <Time_proc> is 0, then the first time level

 T1 should be ideally the same as fhour or the first time level to be

 extracted. If Time_proc is 1, then T1 and T2 should denote the

 two time levels of the first record to be written in the output GRIB

 file, like the averaging/accumulating period. The remaining time

 levels of the successive records will be automatically assigned in

 the respective order.

<Lev_typ> - The level type. A few level types have been defined like 0 for

 surface, 1 for pressure levels in mb, 2 for MSL, 3 for metres above

 ground and 4 for soil levels. If Lev_typ > 4, then it is the actual level code.

<Lev> - The level depending on Lev_typ. For example, if the Lev_typ is 1,

 then Lev has to be pressure level. If Lev_typ is 3, the value of Lev

 can be 2 or 10 indicating ‘2m above gnd’ or ‘10m above gnd’

 respectively. If Lev=-99, then the Lev_typ is the actual level code,

 for values 1-4. Specify -1 for processing all levels matching with

 the variable name.

<intp> - Regridding option. Default is ‘no regrid’ (0). If the value is 1, the

 variable will be interpolated to regular latitude-longitude grid with

 the default ‘grid’ definition, unless a set of parameters are provided by

 the user as the next block of arguments.

<NX…YI> - The parameters of the regular latitude-longitude GRIB record in the

6

 order of number of x and y sizes, start, end and interval of x and y

 values.

The script will generate the final output in a file named <parameter>.grb. But there will

be another output file called ‘output.grb’ which contains the parameter for all time levels. The

utility can be used to convert or regrid only one parameter at a time and if the user wants many

or all parameters in the file to be converted, then set up a master script for converting each of

the parameters one-by-one and then appending them all together using ‘wgrib’ or any other

tool.

For an example, if the user wants to generate the orography ‘hgtsfc’ (STASH code=33)

from a UM file called ‘qwqg00.pp0’ with base date of ‘2014030100’ lying in the current working

directory, for all time levels (-1) with time processing type of ‘0’ (instantaneous) starting with

the two first successive time levels of [0 24] and level-type ‘0’ (surface type) at surface level (0)

and without regridding (0), the following commands are to be excuted.

export PDY=’2014030100’

export INDIR=`pwd`

‘umfld2grib.sh qwqg00.pp0 hgtsfc -1 0 0 24 0 0 0’

If the final argument is 1 then it will regrid to a default regular latitude-longitude grid

unless the command arguments are followed by the regridding parameters in the format ‘NX

NY XS XE XI YS YE YI’.

The error messages are generated, whenever the user makes some mistake, like wrong

file name or wrong directory, and the program aborts with a message,

“ABNORMAL EXIT: Check the export variables PDY, INDIR.. or the first argument INFILE”

If the datestamp is wrong, in general it may not abort, but will give a warning message

and adopt the new datestamp. The same message will be given when any packed parameter is

encountered inside the file or whenever UM utilities fail to generate datestamp for that

particular parameter variable.

“<UM_file> may contain packed fields or this variable may need nonzero RECNO !! PDY … is

7

altered as …”, (for blank PDY).

“WARNING: PDY inside file is … , but set as … ”, (for wrong PDY).

For STASH to GRIB mapping, a script umstashcode.sh searches the the GRIB short

name for the corresponding STASH code and finds out the GRIB code from

paramtable.permanent, which is according to the ‘GRIB parameter table’ for NCEP GRIB

parameters. If the match is not found, the script will abort with a message,

“Variable … is not recognized ABNORMAL EXIT. Select from”

followed by the long list of valid STASH names for the variables that can be given as argument.

Thus, to get a list of all parameters currently available with the converter, simply run the script

with an invalid parameter. If paramtable.permanent does not have the corresponding GRIB

short name, it will again exit with a similar message informing that the ‘GRIB code does not

exist’. So what if the input file itself does not contain the variable, the user has requested for?

The script may not give directly the clue, but will again abort with the similar kind of message.

It is the duty of the user to check for the correct field, level and time level beforehand, and

whether it is available inside the file or not, though the ‘xconv’ utility. Currently about 56

parameters have been included and the list will grow in future with the inclusion of each new

variable as a new single statement record in ‘umstashcode.sh’. Appendix-VII lists the table of

STASH name, GRIB name, GRIB code, and most suitable ‘Level code’ and the description of

the data content for the parameters already included in ‘umstashcode.sh’. The user can check

the description and find out the STASH name of the particular field variable they are interested

in.

Some of the parameters may be packed which needs to be unpacked using ‘ieee’ utility,

for which the provision is made in the utility script to switch on the ‘unpacking’. So if the script

aborts, and other conditions are all satisfied, the user is advised to look for the unpacking

options. To switch on the unpacking option, there is an export variable, so that the user need

not worry about changing the script, but only need to give an export statement before run, like,

export UNPCK=1

For setting up the operational scripts for grib conversion, the user is advised to check

8

properly the command offline once and see if it is working properly and if the output files are

generated in the proper manner. The output file metadata can be checked by the command,

wgrib –V <parameter>.grb

The user can check the metadata to ensure, if the maximum/minimum values are in the

correct range as in the source data and in enough decimal accuracy. Also it is important to

visualize the field using ‘xconv’ display utility and compare with the original UM record to see

if the range of values distinguishable as in the source data and if the masking is done properly.

If the decimal scale is not up to your satisfaction, or some unusual warning messages are

produced during the display, you can change the default decimal accuracy in the range ‘0-5’.

The decimal scale is set by an export statement like,

export DS=3

Another export option is made available for directly taking record number if the order of

the parameter in the list is fixed and known beforehand. Through ‘xconv’ utility, you can find

out the order and number in which the parameter of interest is listed. In the current version a

number of field variables (dswrf, dlwrf, ndlwrf, ulwrftoa, icec and icetk) are setup with the fixed

RECNO option in the script by the following part of the code, which will take the given record

numbers unless prescribed from outside through export statements, in which case the

exported record numbers will take precedence.

if [$RECNO -eq 0]

then

 if [$INF == 'dswrf' -o $INF == 'DSWRF'];then RECNO=9;fi

 if [$INF == 'dlwrf' -o $INF == 'DLWRF'];then RECNO=14;fi

 if [$INF == 'ndlwrf' -o $INF == 'NDLWRF'];then RECNO=11;fi

 if [$INF == 'ulwrftoa' -o $INF == 'ULWRFTOA'];then RECNO=12;fi

 if [$INF == 'icec' -o $INF == 'ICEC'];then RECNO=34;fi

 if [$INF == 'icetk' -o $INF == 'ICETK'];then RECNO=35;fi

fi

This option was needed because of the failure of some of the UM utilities for these

parameters. For these cases the script may abort with some of the most likely messages as

below and optionally followed by a list of valid STASH names,

“WARNING: STASH utility failure”

9

“ERROR: STASH code mismatch, pl check the field. Or use RECNO option, ABNORMAL

EXIT!!”

“List of variables allowed:”

So a utility is created which will convert the particular record directly to netcdf format

with an interpolation option (umfld2nc.tcl) so that execution of some of the UM utilities can be

avoided. So the user is adviced to take a special note of this option, and to try it if all other

options fail. The export statement to be executed just before the running of the script is,

export RECNO=value

This option can be used for any parameter if the order of the parameter in the file is well

known. The arguments are required to be properly specified in this case as there is no

checking utility is executed for date etc.. This method can be used in operational scripts as

long as there is no change in the writing order and the number of diagnostics being written in

the UM file. Caution has to be taken to verify the record number, each time whenever there is a

change in the STASH file structure, in the case when such a script is operationalised in regular

production mode. Another common mistake by the user is to forget to cancel this option after

its usage for some parameter while continuing with other parameters in the same shell

environment. It is very important to cancel this option by again exporting RECNO=’0’, for the

utility to continue in its default mode of variable selection for the other parameters.

Enough care has been taken for masked fields or land-only or sea-only parameters to

handle the missing value or masked value. The land-sea mask etc. has been handled in a very

crude and simple manner as set up currently to avoid the “boundary noise” problem while

interpolating along the boundary of the mask or NaN area. Currently the logic is incorporated

through the FORTRAN program treated by simple if statements and decided by some threshold

values as ‘less than 1’ which are treated as ‘zero’s. The user needs to check the output

properly and if necessary can do some changes in the FORTRAN codes to set it according to

the user-requirement. The missing value is normally taken as a negative values, like -9 or -99,

so that the visualization using ‘xconv’ will render the parameter shading color range more

distinguishable as the original field, though the scale can be slightly different. The user is free

to play with different MISS values and accept whichever is satisfying to his/her needs. More

complex ‘boundary’ handling can be incorporated through the FORTRAN programs by the user

to handle the mask more effectively. The export statement to prescribe the miss values outside

10

the script for example, is

export MISS=-1

For soil layers (for variables like ‘soilm’ and ‘tsoil’), the level type is 4 (LTYP=4) and the

four layers (0-10cm), (10 – 40cm), (40-100cm) and (100-200cm) are given by ‘level’ arguments

(1-4) respectively (LEV=1,…4). For extracting a particular level number 1, LTYP=4, LEV=1 can

be used. Alternatively for particular layers (0-10), (10-40), (40-100) and (100-200), use

LTYP=0,10,40 and 100 respectively. This part of the code is given as

if [$INF == 'soilm' -o $INF == 'SOILM' -o $INF == 'tsoil' -o $INF ==

'TSOIL']

then

 if [$LEV -eq 1];then LTY=112; LEV=10;fi

 if [$LEV -eq 2];then LTY=112; LEV=2600;fi

 if [$LEV -eq 3];then LTY=112; LEV=10340;fi

 if [$LEV -eq 4];then LTY=112; LEV=25800;fi

 LEVEL=" "

 if [$LTYPSAVE -eq 0];then LEVEL="0-10 cm down";fi

 if [$LTYPSAVE -eq 10];then LEVEL="10-40 cm down";fi

 if [$LTYPSAVE -eq 40];then LEVEL="40-100 cm down";fi

 if [$LTYPSAVE -eq 100];then LEVEL="100-200 cm down";fi

 if [$LEVSAVE -gt 0]

 then

 LEVEL="0-`expr $LEVSAVE` cm down"

 if [$LTYPSAVE -gt 0];then LEVEL="`expr $LTYPSAVE`-`expr $LEVSAVE` cm

down";fi

 fi

fi

One of the main limitations currently is in the specification of only a limited number of

explicit level types. There are a large number of level codes and it is a tremendous task to

incorporate all those level codes into the script. For any specific requirement regarding the

inclusion of new level type, the script can be changed by the user in the following ‘if loop’ to

include more ‘if blocks’ for more types of levels if the user takes a little trouble to find out the

level type of the new variable. Another option is made available to the user for inclusion of any

‘level type’ (LTYP) if the ‘level code’ (LTY) is known. Thus it is having currently only five

explicit options of level types 0,1,2,3, and 4 which correspond to ‘surface’, ‘pressure levels’,

‘mean sea level’, ‘ m above gnd’ and ‘soil layers’ respectively. If the LTYP is greater than 4,

then LTY=LTYP. In other words, if the user knows the level code of the parameter he is

interested to extract, then he can specify it from outside through LTYP argument.

11

For the LTY values corresponding to 1-4, an option is provided by a special usage of

‘level’ argument (LEV). If LEV=-99, then the LTYP denotes actual LTY (ie, LTY=LTYP) for values

1-4, which corresponds to ‘surface’, ‘cloud base level’, ‘cloud top level’, and ‘the level of zero

isotherm’ respectively according to the NCEP GRIB table definitions. The following part of the

code describes the treatment of the level type and defines explicitly the NCEP GRIB level

codes for the level types. For level type greater than 4, it is taken as the actual level code.

LEVEL=" "

if [$LTYP -eq 0]

then

 LTY=1

 LEVEL='sfc'

elif [$LTYP -eq 1]

then

 LTY=100

 LEVEL=" mb"

 if [$LEV -gt 0]; then LEVEL="`expr $LEV` mb";fi

elif [$LTYP -eq 2]

then

 LTY=102

 LEVEL='MSL'

elif [$LTYP -eq 3]

then

 LTY=105

 LEVEL=" m "

 if [$LEV -gt 0]; then LEVEL="`expr $LEV` m ";fi

elif [$LTYP -eq 4]

then

 LTY=112

elif [$LTYP -gt 4]

 then

 LTY=`expr $LTYP`

fi

Focussing on the time processing option ‘TAVE’, which decides if it is one- time level or

two-time level, the decision of TAVE=1 to select the type of options as two- time level is

entirely based on the type of parameter is being selected to process. For example, the default

type in general is ‘ave’ meaning averaging of the parameter between the two time levels. If the

parameter is ‘apcp’, it is ‘acc’ (accumulated) as the rainfall is generally set up as accumulated

quantity. In case of ‘tmax’ and ‘tmin’, the time processing is the ‘maximum’ and ‘minimum’

respectively between the two time levels. Thus the user can alter the script, if he wants to enter

a new field, if it requires a treatment other than ‘ave’, if TAVE=1. The part of the code dealing

12

with the time processing is given as follows.

TLEVEL=" "

if [$TLEV -eq 0]; then TLEVEL=':anl:';fi

if [$TLEV -gt 0]; then TLEVEL=":`expr $TLEV`hr "; fi

if [$TAVE -eq 1]

then

 AC=3 ## ave

 if [$INF == 'tmax' -o $INF == 'TMAX'];then AC=2;fi ## time range

 if [$INF == 'tmin' -o $INF == 'TMIN'];then AC=2;fi ## time range

 if [$INF == 'apcp' -o $INF == 'APCP'];then AC=4;fi ## acc

 if [$TLEV -gt 0]; then TLEVEL="\-`expr $TLEV`hr"; fi

else

 AC=10

fi

if [$T1 -lt 0]; then T1=0; fi

if [$T2 -lt 0]; then T2=24; fi

if [$T2 -le $T1]; then T2=`expr $T1 + 24`; fi

if [$TAVE -eq -99]

then

 AC=4

 TAVE=1

 TLEVEL=" "

fi

5. Examples

Suppose the base date is ‘2014030100’ and all UM files are lying in the current working

directory. To extract mean sea level pressure from a UM file named ‘qwqg00.pp0’ at the

analysis time without any regridding option, use the STASH name ‘prmsl’. (A list of valid

STASH names can be obtained by either checking ‘umstashcode.sh’ or by executing

‘umfld2grib.sh’ with an invalid ‘dummy’ name as parameter argument.). Assuming that the

above UM file contains the requested variable at time intervals ‘0, 24, 48, 72…hours’ the

following command will generate a GRIB1 file named ‘prmsl.grb’.

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh qwqg00.pp0 prmsl 0 0 0 24 2 -1 0

To extract zonal wind (ugrd) at 850 hPa level at all timelevels and regrid to the default

regular latitude-longitude global grid of (1000x751) at a resolution of 0.36 deg. X 0.24 deg.,

13

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh qwqg00.pp0 ugrd -1 0 0 24 1 850 1

To extract temperature at 1.5m (t2m) for 36 hour only and regrid to 1 deg. X 1 deg. global

grid from a UM file named xaviaa_pb024 containing time levels at 3-hourly intervals starting

with one valid for 27th hour and ending with one valid for 48th hour and to assign the outputting

level as ‘2m above gnd’ as a whole integer,

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh xaviaa_pb024 t2m 36 0 36 39 3 2 1 360 181 0.0 359.0 1.0 -90.0 90.0 1.0

To extract 24-hourly accumulated precipitation (apcp) at all times from a file named

‘qwqg00.pp2’ , containing daily rainfall records staring with day-1 (0-24 hr rainfall) and with no

regridding,

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh qwqg00.pp2 apcp -1 1 0 24 0 0 0

To extract relative humidity (rh) at all vertical pressure levels at 24 hour only from

qwqg00.pp0 with no regridding,

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh qwqg00.pp0 rh 24 0 24 48 1 -1 0

To extract temperature (tmp) at all pressure levels and all time levels and regrid to

default regular lat-long grid (1000x751),

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh qwqg00.pp0 tmp -1 0 0 24 1 -1 1

14

For extracting the soil moisture (‘soilm’) for all four layers and averaged for (30-33)

hours (valid at 33 hours) from file ‘xaviaa_pi024’ containing 3-hourly accumulated soil moisture

records starting with the range (24-27) hours and ending with (45-48) hours (no regridding),

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh xaviaa_pi024 soilm 33 1 30 33 4 -1 0

For the same field if only the first topmost soil layer (layer number 1) is required, then

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh xaviaa_pi024 soilm 33 1 30 33 4 1 0

Again for extracting only the layer ‘40-100cm down’ for all time levels (note that here

only LTYP=40 is important as LEV=100 is given only for looking it more meaningful),

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh xaviaa_pi024 soilm -1 1 24 27 40 100 0

To extract the 3-hourly averaged upward longwave radiation flux at top of the

atmospehere (ulwrftoa) from a file xaviaa_pf000 for all time levels starting with the first record

valid for 3 hours and ending at 24 hours by specifying the record number of the variable (12th

record) with no regridding and NECP GRIB specification of ‘level code’ of ‘nom. top’ of the

atmosphere as ‘233’ (here the argument list can end with the LTYP option ‘233’ as by default,

the ‘LEV’ is inconsequential and the default regridding option ‘INTP’ is ‘0’ meaning ‘no

regridding’),

export PDY=’2013020100’

export INDIR=’.’

export RECNO=12

umfld2grib.sh xaviaa_pf000 ulwrftoa -1 1 0 3 233

The above command actually does not require the export statement for RECNO as it is

15

currently specified inside the script. But if at any time in future, the record structure is changed

so as to alter the ordering of ‘ulwrftoa’, this hardwared RECNO environment variable will not

give correct metadata description of the actual data being processed as 12th record. So every

time, when there is a change in the record structure so as to alter the ordering of ‘ulwrftoa’, the

script has to be modified. However, if the correct RECNO is specified from outside by export

variable, it will superseed the hardwared RECNO. The specification of NCEP level code ‘233’ as

the level type (LTYP) sets the correct description of the level in the metadata which is not

incorporated inside the script as it is outside the range of the explicit level types (1-4). For the

Level codes (1-4) the LEV argument needs to be given as -99, to enable the LTYP to behave as

‘level code’. The Annexure-VII gives the user with a suggestion of the most likely or suitable

level codes which can be prescribed through the LTYP argument for the variables currently

incorporated in ‘umstashcode.sh’. As more variables are being added, the table can also grow

accordingly. So the user is adviced to refer to the version of the utility and consider some extra

variables not included currently in the user guide by looking into ‘umstashcode.sh’.

For generating a regridded accumulated rainfall field (apcp) for day-1 forecast over the

limited area domain (50E – 100E, 0- 50N) to a 0.5 deg. X 0.5 deg. regular latitude-longitude grid,

from a file ‘qwqg00.pp2’,

export PDY=’2014030100’

export INDIR=’.’

umfld2grib.sh qwqg00.pp2 apcp 24 1 0 24 0 0 1 101 101 50.0 100.0 0.5 0.0 50.0 0.5

(Note: For obtaining Total Precipitable Water (TPW) from UM, generate GRIB files

containing STASH parameters tcdm, tcwm, tcql and tcqf with GRIB name ‘PWAT’ as given in

Appendix-VII and compute TPW=tcwm-tcdm-tcql-tcqf).

6. Summary

The ‘umfld2grib.sh’ utility is proved as a very useful tool to convert the UM file to GRIB.

This utility script can probably be adopted or tested for GRIB formats from other centres also if

the proper library is installed as FORTRAN callable routines. A minor limitation of the script is

that it has only very limited explicit options of level-types in-built into the script and it covers

only five most useful level types. However, there is possibility to specify the actual level code

as level-type argument, if the user takes a little extra effort to find out the level code of the

16

similar record. The option to externally specify the record number RECNO as an export

variable is also incorporated which will be very useful in speeding up the process in regular

operational environments as long as the record structure and order does not change. Another

issue is the inclusion of more parameters and STASH-to-GRIB mapping of new types of STASH

parameters which does not have corresponding GRIB code or vice versa. This is an issue for

any centre and international efforts are undergoing to device methodologies to solve this

issue.

Disclaimer: Most of the parameters included so far has been tested and maximum care has been taken to prevent any serious bug.
However, there can be unnoticed bugs or unexpected results for any existing or new parameters to be included and no claim has
been made by the author regarding the accuracy and the reliability on the working of the software, the results and the
consequences thereof.

References:

1. Green, T., 2009, Unified Model File Utilities, Unified Model Documentation Paper No. F5.

UK Met Office, Exeter, UK.

2. Robinson, D., 2008, FIELDCALC: UM Utility for calculating derived diagnostics, Unified

Model Documentation Paper No. F53, UK Met Office, Exeter, UK.

17

APPENDIX – I

‘umfld2grib.sh’ script for GRIB conversion.

_#!/bin/ksh
#set -x

#V0.0 umfld2grib.sh: To convert (or regrid) a requested field in UM file

into grib1 format

Author: Saji Mohandas, NCMRWF, India (2013)

Format:'umfld2grib.sh [umfile_name] [variable] [-1] [time_ave/acc] [T1

T2] [level_type] [-1] [0] [nx ny xs xe xi ys ye yi]'

Requirements: umdate.sh subset.tcl, umstashcode.sh, encgrbll.f,

gribheader.txt, ncdump, permanent.paramtable, adv, NCEP Libraries -

nwprod/lib

History: Added UNPCK option using ieee tool and encgrblsm.f to set up

interpolated Land_sea mask, Dec 2013 (SM)

History: Added umfld2nc.tcl and cdo tools for netcdf conversion and

interpolation to 1000x751 grid for ICEC&ICETK, Jan 2014 (SM)

History: Added encgrbllrev.f/encgrblsmrev.f to reverse for interpolation,

Jan 2014 (SM)

History: Added encgrbllrevneg.f to reverse for interpolation and to deal

with the undefined values, Jan 2014 (SM)

History: Added soil layer type metadata specification and modifications

to LTYP and LEV, Feb 2014 (SM)

History: Modified the XE as -dx for converting to -180 - 180 system of x-

coordinates , April 2014 (SM)

History: Added option for LTYP as level-type code and special option

LEV=-99 for LTYP=1-4, April 2014 (SM)

######### Export variables ###########################

VNo='vn7.9'

export UTILDIR=${UTILDIR:-/gpfs1/home/saji/umutil_7.9}

export PDY=${PDY:-2012010100}

YYYYMMDD=`echo $PDY | cut -c1-8`

HH=`echo $PDY | cut -c9-10`

export INDIR=${INDIR:-

/gpfs1/home/umprod/PS28IN_UMPROD/UM/${YYYYMMDD}/${HH}}

######### Arguements #################################

export INFILE=${1:-qwqg00.pp2}

export INF=${2:-apcp}

export TLEV=${3:--1}

export TAVE=${4:-1}

export T1=${5:-0}

export T2=${6:-24}

export LTYP=${7:-0}

export LEV=${8:--1}

18

export INTP=${9:-0}

export NX=${10:-1000}

export NY=${11:-751}

export XS=${12:-0.000}

export XE=${13:-359.64}

export XI=${14:-0.36}

export YS=${15:--90.000}

export YE=${16:-90.000}

export YI=${17:-0.24}

export DS=${DS:-3}

export UNPCK=${UNPCK:-0}

export MISS=${MISS:--99.0}

export RECNO=${RECNO:-0}

NXNAT=1024

NYNAT=769

XSNAT=0.000

XENAT=359.648

XINAT=0.352

YSNAT=-90.000

YENAT=90.000

YINAT=0.234

XSSTA=0.176

XESTA=359.824

YSSTA=-89.883

YESTA=89.883

#if [$INTP -eq -100];then INTP=0;fi

#if [$INTP -eq -101];then INTP=1;fi

if [$INTP -eq 1]

then

 if [$NX -eq $NXNAT \

 -a $NY -eq $NYNAT]

 then

 INTP=0

 fi

fi

if [$INTP -eq 0]

then

 NX=$NXNAT

 NY=$NYNAT

 XS=$XSNAT

 XE=$XENAT

 XI=$XINAT

 YS=$YSNAT

 YE=$YENAT

 YI=$YINAT

 if [$INF == 'ugrd' -o $INF == 'UGRD' \

 -o $INF == 'u10m' -o $INF == 'U10M']

 then

 XS=`expr $XSSTA`; XE=`expr $XESTA`

 fi

19

 if [$INF == 'vgrd' -o $INF == 'VGRD' \

 -o $INF == 'v10m' -o $INF == 'V10M']

 then

 YS=`expr $YSSTA`; YE=`expr $YESTA`

 NY=`expr $NY - 1`

 fi

fi

#if [$# -eq 0]

#then

#echo ABNORMAL EXIT: NO ARGUEMENTS

echo

echo VNo=$VNo

echo UTILDIR=$UTILDIR

echo PDY=$PDY

echo INDIR=$INDIR

echo INFILE=$INFILE

echo

echo Format:'umfld2grib.sh [umfile_name] [variable] [fhour] [time_ave/acc]

[T1 T2] [level_type] [level] [intp] [nx ny xs xe xi ys ye yi]'

echo

echo \(fhour: Can be single forecast hour or -1 for all time levels\)

echo \(time_ave/acc: 0 - 'Instantaneous' \(Default option\), 1 -

'Average/Accumulation', -99 - 'Reserved for specific usage'\)

echo \([T1 T2]: Successive time levels starting with fhour for

instantaneous variables or first time range ending with fhour for

time_ave/acc\)

echo \(level_type: 0 - 'sfc' \(Default option\), 1 - 'mb', 2 - 'msl', 3 -

'm above gnd', 4 - 'cm down',

echo " " \> 4 - denotes 'level code'\)

echo \(level: Can be single level or -1 for all levels. If soil layers, 1-4

denotes the four layers 'cm down',

echo " " -99 - indicates that level_type is 'level code' for

values 1-4 \)

echo \(intp: Option for regridding to regular lat-lon grid of size- nx*ny,

resolution- xi*yi and domain- xs-xe, ys-ye

echo " " 0 - No regridding \(Default\), 1- Regrid \)

echo

echo

#if [$TAVE -eq -1]

#then

echo

echo

echo ERROR! Specify the time processing:-

echo \(time_ave/acc: 0 - 'Instantaneous' \(Default option\), 1 -

'Average/Accumulation', -99 - 'Reserved for specific usage'\)

echo

echo ABNORMAL EXIT

echo

exit

#fi

#if [$LTYP -eq -1]

20

#then

echo

echo

echo ERROR! Specify level_type:-

echo \(level_type: 0 - 'sfc' \(Default option\), 1 - 'mb', 2 - 'msl', 3 -

'm above gnd', -99 - Reserved for specific usage\)

echo

echo ABNORMAL EXIT

echo

exit

#fi

#exit

#fi

Check for PDY, input file and directory

rm -f ./datestamp

$UTILDIR/umdate.sh $INFILE $INDIR >/dev/null 2>&1

if [! -s ./datestamp] ; then echo ABNORMAL EXIT: Check the export

variables PDY, INDIR.. or the first arguement INFILE ;exit; fi

read PDYNEW < ./datestamp

if ["$PDYNEW" != "$PDY"]

then

 if ["$PDYNEW" == ""]

 then

 echo $INFILE may contain packed fields or this variable may need nonzero

RECNO !! PDY $PDYNEW is altered as $PDY

 else

 echo WARNING: PDY inside file is $PDYNEW , but set as $PDY

 fi

fi

#stamp=`echo $PDY | $UTILDIR/adv/adv -n -a 0`

YY=`echo $PDY | cut -c3-4`

MM=`echo $PDY | cut -c5-6`

DD=`echo $PDY | cut -c7-8`

########################

STASH=`$UTILDIR/umstashcode.sh $INF | awk '{print $4}'`

SCOUNT=`echo $STASH | wc | awk '{print $2}'`

GBNAME=`$UTILDIR/umstashcode.sh $INF | awk '{print $1}'`

COUNT=`echo $GBNAME | wc | awk '{print $2}'`

if [$COUNT -eq 0] || [$SCOUNT -eq 0]

then

 echo Variable $INF not recognised ABNORMAL EXIT !!

 echo

 echo Select from:

 echo

 cat $UTILDIR/umstashcode.sh | cut -d" " -f5 | sed "1,4d"

 echo

 exit

21

fi

NCNAME=`$UTILDIR/umstashcode.sh $INF | awk '{print $3}'`

GC=`grep " $GBNAME " $UTILDIR/paramtable.permanent | awk '{print $1}'`

if ["$GC" == " "]

then

 echo Grib Code $GC does not exist for variable $INF

 echo ABNORMAL EXIT !!

 exit

fi

TLEVEL=" "

if [$TLEV -eq 0]; then TLEVEL=':anl:';fi

if [$TLEV -gt 0]; then TLEVEL=":`expr $TLEV`hr "; fi

if [$TAVE -eq 1]

then

 AC=3 ## ave

 if [$INF == 'tmax' -o $INF == 'TMAX'];then AC=2;fi ## time range

 if [$INF == 'tmin' -o $INF == 'TMIN'];then AC=2;fi ## time range

 if [$INF == 'apcp' -o $INF == 'APCP'];then AC=4;fi ## acc

 if [$TLEV -gt 0]; then TLEVEL="\-`expr $TLEV`hr"; fi

else

 AC=10

fi

if [$T1 -lt 0]; then T1=0; fi

if [$T2 -lt 0]; then T2=24; fi

if [$T2 -le $T1]; then T2=`expr $T1 + 24`; fi

if [$TAVE -eq -99]

then

 AC=4

 TAVE=1

 TLEVEL=" "

fi

LTYPSAVE=`expr $LTYP`

LEVSAVE=`expr $LEV`

LEVEL=" "

if [$LTYP -eq 0]

then

 LTY=1

 LEVEL='sfc'

elif [$LTYP -eq 1]

then

 LTY=100

 LEVEL=" mb"

 if [$LEV -gt 0]; then LEVEL="`expr $LEV` mb";fi

elif [$LTYP -eq 2]

then

 LTY=102

 LEVEL='MSL'

elif [$LTYP -eq 3]

then

22

 LTY=105

 LEVEL=" m "

 if [$LEV -gt 0]; then LEVEL="`expr $LEV` m ";fi

elif [$LTYP -eq 4]

then

 LTY=112

elif [$LTYP -gt 4]

 then

 LTY=`expr $LTYP`

fi

FIELD=`expr $NCNAME`

XEND=`echo $XE | awk '{print $1 * 1000}'`

if [$XEND -lt 0] && [$XEND -gt -180000]

then

 XE=`echo $XE | awk '{print $1 + 360.0}'`

fi

if [$GC -eq 1];then DS=0;fi

if [$GC -eq 2];then DS=0;fi

if [$GC -eq 6];then DS=0;fi

if [$GC -eq 7];then DS=0;fi

if [$GC -eq 39];then DS=3;fi

if [$GC -eq 51];then DS=3;fi

if [$INF == 'pres' -o $INF == 'PRES'];then DS=0;fi

if [$INF == 'prmsl' -o $INF == 'PRMSL'];then DS=0;fi

if [$INF == 'spfh' -o $INF == 'SPFH'];then DS=7;fi

if [$INF == 'q2m' -o $INF == 'Q2M'];then DS=7;fi

if [$INF == 'cin' -o $INF == 'CIN'];then DS=0;fi

if [$INF == 'cape' -o $INF == 'CAPE'];then DS=0;fi

if [$INF == 'ndswrf' -o $INF == 'NDSWRF'];then DS=3;fi

if [$INF == 'fdswrf' -o $INF == 'FDSWRF'];then DS=3;fi

if [$INF == 'rdswrf' -o $INF == 'RDSWRF'];then DS=3;fi

if [$INF == 'uswrftoa' -o $INF == 'USWRFTOA'];then DS=3;fi

if [$INF == 'dswrftoa' -o $INF == 'DSWRFTOA'];then DS=3;fi

if [$INF == 'soilm' -o $INF == 'SOILM'];then DS=3; MISS=-1;fi

if [$INF == 'tsoil' -o $INF == 'TSOIL'];then DS=3; MISS=-1;fi

if [$INF == 'snod' -o $INF == 'SNOD'];then DS=3;fi

if [$INF == 'dswrf' -o $INF == 'DSWRF'];then DS=3;fi

if [$INF == 'dlwrf' -o $INF == 'DLWRF'];then DS=3;fi

if [$INF == 'ndlwrf' -o $INF == 'NDLWRF'];then DS=3;fi

if [$INF == 'ulwrftoa' -o $INF == 'ULWRFTOA'];then DS=3;fi

if [$INF == 'icec' -o $INF == 'ICEC'];then DS=3;MISS=-1;fi

if [$INF == 'icetk' -o $INF == 'ICETK'];then DS=3;MISS=-1;fi

if [$RECNO -eq 0]

then

 if [$INF == 'dswrf' -o $INF == 'DSWRF'];then RECNO=9;fi

 if [$INF == 'dlwrf' -o $INF == 'DLWRF'];then RECNO=14;fi

 if [$INF == 'ndlwrf' -o $INF == 'NDLWRF'];then RECNO=11;fi

 if [$INF == 'ulwrftoa' -o $INF == 'ULWRFTOA'];then RECNO=12;fi

 if [$INF == 'icec' -o $INF == 'ICEC'];then RECNO=34;fi

 if [$INF == 'icetk' -o $INF == 'ICETK'];then RECNO=35;fi

23

fi

########################

echo

echo DS=$DS UNPCK=$UNPCK MISS=$MISS RECNO=$RECNO

echo Processing $0 $INFILE $INF $TLEV $TAVE $T1 $T2 $LTYP $LEV $INTP $NX

$NY $XS $XE $XI $YS $YE $YI

echo

cp $INDIR/$INFILE input.ff || exit 1

sleep 3

########################

if [$RECNO -gt 0]

then

 cp input.ff infile; sleep 2

 if [$INTP -eq 0]

 then

 $UTILDIR/umfld2nc.tcl `expr $RECNO` 0 >/dev/null 2>&1; sleep 2

 mv outfile.nc umfile.nc || exit 1

 else

 $UTILDIR/umfld2nc.tcl `expr $RECNO` 1 $XS $XE $XI $YS $YE $YI >/dev/null

2>&1; sleep 2

 mv outfile.nc umfile.nc

 fi

 rm -f infile outfile.nc

else

 $UTILDIR/fldscr.sh input.ff ${STASH} >/dev/null 2>&1; sleep 2

 if [$UNPCK -eq 0]

 then

 mv ${STASH}.ff STASH.ff

 else

 echo First unpack $INF

 rm -f STASH.ff

 $UTILDIR/ieee -64 ${STASH}.ff STASH.ff >/dev/null 2>&1 || exit 1

 rm -f ${STASH}.ff

 fi

 rm -f ./datestamp

 $UTILDIR/umdate.sh STASH.ff . >/dev/null 2>&1

 if [! -s ./datestamp] ; then echo WARNING: STASH utility failure ; fi

 WRDS=`cat datestamp | wc | awk '{ print $2 }'`

 if [$WRDS -eq 0]

 then echo ERROR: STASH code mismatch, pl check the field. Or use RECNO

option, ABNORMAL EXIT!!

 echo List of variables allowed:

 echo

 cat $UTILDIR/umstashcode.sh | cut -d" " -f5 | sed "1,4d"

 echo

 exit

 fi

 sleep 5

########################

24

Interpolate the requested field to latlon grid and convert to grib1

(Grid specifications are in gribheader.txt)

 if [$INTP -eq 0]

 then

 $UTILDIR/subset.tcl -i STASH.ff -o umfile.nc -of netcdf >/dev/null 2>&1

|| exit 1

 else

 $UTILDIR/subset.tcl -i STASH.ff -o umfile.nc -of netcdf -xs $XS -xe $XE

-xi $XI -ys $YS -ye $YE -yi $YI >/dev/null 2>&1 || exit 1

 fi

fi

#######

ncdump umfile.nc >umfile.nc.dump

sed "1,/`expr $FIELD` =/d" umfile.nc.dump > umfile.nc.dump.txt || exit 1

sed "1,4d" umfile.nc.dump | head -n1 | cut -d"=" -f2 >levels || exit 1

sed "1,5d" umfile.nc.dump | head -n1 | cut -d"(" -f2 >times || exit 1

NTIMES=`cat times | cut -d" " -f1`

NLEVELS=`cat levels | cut -d";" -f1`

NREC=`echo $NTIMES $NLEVELS | awk '{print $1 * $2}'`

CNTT=`sed "1,/latitude =/d" umfile.nc.dump | sed "1,/latitude =/d" | grep -

n "=" | head -n1 |cut -d: -f1`

LATWRD=0

if ["$CNTT" == '']

then

 CNTT=`sed "1,/lat =/d" umfile.nc.dump | sed "1,/lat =/d" | grep -n "=" |

head -n1 |cut -d: -f1`

 LATWRD=1

fi

CNTT=`expr $CNTT - 1`

if [$CNTT -eq 1]

then

sed "1,/latitude =/d" umfile.nc.dump | sed "1,/latitude =/d" | sed "1d" |

head -n 100 >dump.txt

 sed "1,/latitude =/d" umfile.nc.dump | sed "1,/latitude =/d" | sed "1d"

>dump.txt

 if [$LATWRD -eq 1]

 then

 sed "1,/lat =/d" umfile.nc.dump | sed "1,/lat =/d" | sed "1d" >dump.txt

 fi

else

sed "1,/latitude =/d" umfile.nc.dump | sed "1,/latitude =/d" | sed

"1,`expr $CNTT`d" | head -n 100 >dump.txt

 sed "1,/latitude =/d" umfile.nc.dump | sed "1,/latitude =/d" | sed

"1,`expr $CNTT`d" >dump.txt

 if [$LATWRD -eq 1]

 then

 sed "1,/lat =/d" umfile.nc.dump | sed "1,/lat =/d" | sed "1,`expr

$CNTT`d" >dump.txt

 fi

25

fi

CNT1=`grep -n = dump.txt | grep " t =" | cut -d":" -f1`

if ["$CNT1" == '']

then

 CNT1=`grep -n = dump.txt | grep " time =" | cut -d":" -f1`

fi

CNT2=`grep -n = dump.txt | grep " $FIELD =" | cut -d":" -f1`

if ["$CNT2" == ""];then echo STASH name mismatch, ABNORMAL EXIT; exit;fi

head -n $CNT2 dump.txt | sed "`expr $CNT1`,`expr $CNT2`d" | cut -d"=" -f2 |

cut -d";" -f1 | sed '/^$/d' >levellist

rm -f LEVELLIST fort.* header.txt

while read RECORD

do

 levelnum=1

 while [$levelnum -le $NLEVELS]

 do

 echo $RECORD | cut -d, -f`expr $levelnum` >>LEVELLIST

 levelnum=`expr $levelnum + 1`

 done

done < levellist

sed '/^$/d' LEVELLIST >levellist

IDXT=`expr $T2 - $T1`

XS=`echo $XS | awk '{print $1 * 1000}'`

if [$XS -gt 180000 -a $XS -le 360000];then XS=`expr $XS - 360000`;fi

XE=`echo $XE | awk '{print $1 * 1000}'`

if [$XE -gt 180000 -a $XE -le 360000];then XE=`expr $XE - 360000`;fi

XI=`echo $XI | awk '{print $1 * 1000}'`

YS=`echo $YS | awk '{print $1 * 1000}'`

YE=`echo $YE | awk '{print $1 * 1000}'`

YI=`echo $YI | awk '{print $1 * 1000}'`

idt=1

while [$idt -le $NTIMES]

do

 idz=1

 cp levellist LEVELLIST

 while [$idz -le $NLEVELS]

 do

 if [$idz -gt 1]

 then

 cat LEVELLIST | sed "1d" >temp.list; mv temp.list LEVELLIST

 fi

 head -n1 LEVELLIST >level

 read LEV < level

 if [$LEV -lt 0 -o $LEVSAVE -eq -99];then LEV=`expr $LEVSAVE`;fi

 if [$LEV -lt 0]

 then

 if [$LEV -eq -99]

 then

 if [$LTYP -ge 1 -a $LTYP -le 4]

26

 then

 LTY=`expr $LTYP`

 LEV=0

 LEVEL=" "

 fi

 else

 LEV=0

 if [$LTY -eq 105];then LEV=2;fi

 fi

 else

 if [$INF == 'soilm' -o $INF == 'SOILM' -o $INF == 'tsoil' -o $INF ==

'TSOIL']

 then

 if [$LEV -eq 1];then LTY=112; LEV=10;fi

 if [$LEV -eq 2];then LTY=112; LEV=2600;fi

 if [$LEV -eq 3];then LTY=112; LEV=10340;fi

 if [$LEV -eq 4];then LTY=112; LEV=25800;fi

 LEVEL=" "

 if [$LTYPSAVE -eq 0];then LEVEL="0-10 cm down";fi

 if [$LTYPSAVE -eq 10];then LEVEL="10-40 cm down";fi

 if [$LTYPSAVE -eq 40];then LEVEL="40-100 cm down";fi

 if [$LTYPSAVE -eq 100];then LEVEL="100-200 cm down";fi

 if [$LEVSAVE -gt 0]

 then

 LEVEL="0-`expr $LEVSAVE` cm down"

 if [$LTYPSAVE -gt 0];then LEVEL="`expr $LTYPSAVE`-`expr $LEVSAVE` cm

down";fi

 fi

 fi

 fi

 sed "s/YY MM DD/`expr $YY` `expr $MM` `expr $DD`/g"

$UTILDIR/gribheader.txt | sed "s/GC/`expr $GC`/g" | sed "s/DS/`expr $DS`/g"

| sed "s/T1 T2/`expr $T1` `expr $T2`/g" | sed "s/AC/`expr $AC`/g" | sed

"s/LTY LEV/`expr $LTY` `expr $LEV`/g" | sed "s/NX NY/`expr $NX` `expr

$NY`/g" | sed "s/YS XS/`expr $YS` `expr $XS`/g" | sed "s/YE XE/`expr $YE`

`expr $XE`/g" | sed "s/XI YI/`expr $XI` `expr $YI`/g" >> header.txt

 idz=`expr $idz + 1`

 done

 T1=`expr $T1 + $IDXT`

 T2=`expr $T2 + $IDXT`

 idt=`expr $idt + 1`

done

echo $MISS > missvalue

if [$INF = "land"] || [$INF = "LAND"] || [$INF = "lsmask"] || [$INF

= "LSMASK"]

then

 sed "s/NNNREC/`expr $NREC`/g" $UTILDIR/encgrblsm.f | sed "s/NX/`expr

$NX`/g" | sed "s/NY/`expr $NY`/g" >enc.f

 if [$INTP -eq 1]

 then

27

 sed "s/NNNREC/`expr $NREC`/g" $UTILDIR/encgrblsmrev.f | sed "s/NX/`expr

$NX`/g" |sed "s/NY/`expr $NY`/g">enc.f

 fi

else

 sed "s/NNNREC/`expr $NREC`/g" $UTILDIR/encgrbll.f | sed "s/NX/`expr

$NX`/g" |sed "s/NY/`expr $NY`/g">enc.f

 if [$INTP -eq 1]

 then

 sed "s/NNNREC/`expr $NREC`/g" $UTILDIR/encgrbllrev.f | sed "s/NX/`expr

$NX`/g" |sed "s/NY/`expr $NY`/g">enc.f

 if [$INF = "soilm"] || [$INF = "SOILM"] || [$INF = "tsoil"] || [

$INF = "TSOIL"]

 then

 sed "s/NNNREC/`expr $NREC`/g" $UTILDIR/encgrbllrevneg.f | sed

"s/NX/`expr $NX`/g" |sed "s/NY/`expr $NY`/g">enc.f

 fi

 if [$INF == "icetk"] || [$INF == "ICETK"] || [$INF == "icec"] || [

$INF == "ICEC"]

 then

 sed "s/NNNREC/`expr $NREC`/g" $UTILDIR/encgrbllneg.f | sed "s/NX/`expr

$NX`/g" | sed "s/NY/`expr $NY`/g" >enc.f

 fi

 fi

fi

#cp umfile.nc.dump.txt data.txt

 sed "s/_/$MISS/g" umfile.nc.dump.txt >data.txt

#xlf -q64 -qrealsize=8 -L$UTILDIR/lib -l w3_d -l bacio_4 -l sp_d enc.f -o

enc.x >/dev/null 2>&1 || exit 1

xlf -q64 -qrealsize=8 -L$UTILDIR/lib -l w3_d -l bacio_4 -l sp_d enc.f -o

enc.x

rm -f output.grb

ln -fs header.txt fort.11

ln -fs data.txt fort.12

./enc.x >/dev/null

echo Selecting $TLEVEL $LEVEL $GBNAME

sleep 2

if ["$TLEVEL" == " "]

then

if [$LTYP -eq 1]

then

 wgrib -s output.grb | grep $GBNAME | grep "$LEVEL" | wgrib -i output.grb

-o ${INF}.grb -grib

else

wgrib -s output.grb | grep $GBNAME | wgrib -i output.grb -o ${INF}.grb -

grib

fi

else

if [$LTYP -eq 1]

then

28

 wgrib -s output.grb | grep $GBNAME | grep "$TLEVEL" | grep "$LEVEL" |

wgrib -i output.grb -o ${INF}.grb -grib

else

wgrib -s output.grb | grep $GBNAME | grep "$TLEVEL" | wgrib -i

output.grb -o ${INF}.grb -grib

fi

fi

echo

echo

if [! -s ${INF}.grb]

then

 echo

 echo Problem with filename or variable, ABNORMAL EXIT !!

 echo

 echo "Legal values of 'variable':"

 echo

 cat $UTILDIR/umstashcode.sh | cut -d" " -f5 | sed "1,4d"

 exit

else

 echo UM TO GRIB COMPLETE!

fi

echo "Output file is"

echo

'###'

ls -la ${INF}.grb

echo

'###'

echo

rm -f times level* umfile.nc* fort.* enc.? header.txt data.txt input.ff

STASH.ff LEVELLIST dump.txt missvalue

if [-s ${INF}.grb]

then

 echo UMFLD-GRIB SUCCESSFUL!

fi

exit

__

29

APPENDIX – II

Some utility scripts and the usage:

1. fldscr.sh: Extracts a single parameter from UM file in FF format using fieldcalc utility.

Format: fldscr.sh <UM_file_with_full_path> <STASH_code>

Output filename is <STASH_code>.ff

2. umlist.sh: Generates an ascii table containing the list of fields in a UM FF file with

valid dates and STASH codes and utilises ‘pumf’ utility.

Format: umlist.sh <UM_file> <input_dir> <output_dir>

By default input and output directories are current working directory.

Output is written in ‘varlist’ and <UM_file>.list

3. umdate.sh: Extracts the base date and writes in ‘datestamp’.

Format: umdate.sh <UM_file> <input_dir> <output_dir>

Output file is ‘datestamp’.

4. umstashcode.sh: Prints the GRIB short name, netcdf name, grads name and STASH

code with an argument of STASH short name.

Format: umstashcode.sh <STASH_name>

5. umfld2grib.tcl: Script to extract a field variable in netcdf format with a regridding

option by specifying the record number as the first argument.

Format: umfld2grib.tcl <RECNO> <INTP> [NX NY XS XE XI YS YE YI]

Here the input file should be renamed as ‘infile’ before the execution of command.

Output is stored in ‘output.nc’.

30

6. um2grib.sh: Converts a single field variable in the UM file into NCEP GRIB1 format

with an optional regridding option. This works in the same way as ‘umfld2grib.sh’

and has the same argument format.

Format: um2grib.sh <UM_file> <STASH_name> <Fhour> <Time_proc> [T1 T2]

<level_type> <level> <intp> [NX NY XS XE XI YS YE YI]

Needs to export PDY (YYYYMMDDH format) and INDIR. It uses UM converter

provided by UKMO to convert the entire UM_file into UKMO GRIB1 format as

<UM_File>.grib1 and the requested variable into UKMO GRIB1 format as

<STASH_name>.grib1. If regridding option (<intp>) is 1, then it interpolates into the

new grid, otherwise writes in the same grid in NCEP GRIB1 format as

<STASH_name>.grb. The argument <level_type> as -99 is reserved for correcting for

the bug in UM converter in wrongly specifying the level in terms of ‘mb’ instead of ‘m

above gnd’ for surface specific humidity at 1.5m. The <intp> option of ‘-100’ and ‘-

101’ are reserved for not doing the first part of converting the entire UM file into

UKMO format repeatedly after once it has been converted and works as ‘0’ and ‘1’

option of regridding respectively. This option is used to speed up the process once a

file has been called up as argument which generates the entire converted file with

extension ‘grib1’ and exists in the current working directory which need not be

repeated every time the same file is called upon.

7. convum2gb.sh: Wrapper script to run the UM GRIB converter which uses the

fieldcalc utility. Input UM file should be copied as ‘input.ff’ before running the script

and the output is written in file called ‘output.grib1’.

Format: convum2gb.sh

8. gfs2grib.sh: Manipulates the NCEP GRIB1 format data files for subsetting, regridding

or changing some of the associated metadata informations and produces another

GRIB file of the same format. It follows the similar argument structure and more or

less similar philosophy. The regridding option INTP=-100 is reserved for changing

the base date or time as read from a file ‘newdate’ and INTP=-101, for setting up the

desired time levels provided as the arguments.

31

APPENDIX - III

‘encgrbll.f’ FORTRAN sample program for GRIB conversion.

!!!! ENCGRB: Program for encoding a grib1 file. The compilation command is

below;

!!!!xlf -q64 -qrealsize=8 -qstrict -L/gpfs1/home/exp/gfs/nwprod/lib -l w3_d -l

bacio_4 -lsp_d encgrb.f -o encgrb.x

!!!!

 integer,parameter :: MAXPTS=NX*NY !lat-lon grid

 integer,dimension(200) :: KPDS,KGDS

 logical*1,allocatable :: LB(:) ! bitmap

 real,allocatable :: F(:) ! grid point data values

 integer,dimension(25) :: PDS,GDS

! DATA PDS(1:10)/7,96,255,128,7, 100,10,12,3,4/ !T574

Gaussian grid

! DATA PDS(11:25)/0,0,1,24,0, 10,0,1,2,0, 21,2,0,0,32/ !T574

Gaussian grid

! DATA GDS(1:10)/4,1760,880,89844,0, 128,-89844,-205,205,440/!T574

Gaussian grid

! DATA GDS(11:25)/0,0,0,0,0, 0,0,0,0,255, 0,0,0,0,0/ !T574

Gaussian grid

 DATA PDS(1:10)/7,96,255,128,7, 100,10,12,3,4/ !lat-lon

grid

 DATA PDS(11:25)/0,0,1,24,0, 10,0,1,2,0, 21,2,0,0,32/ !lat-lon

grid

 DATA GDS(1:10)/0,13,13,26000,76000, 128,29000,79000,250,250/!lat-lon

grid

 DATA GDS(11:25)/64,0,0,0,0, 0,0,0,0,255, 0,0,0,0,0/ !lat-lon

grid

 lugb=50

 ! Open GRIB1 file

 call baopenw(LUGB,"output.grb",iret)

 open(11,file='header.txt',form='formatted',status='old')

 open(12,file='data.txt',form='formatted',status='old')

 ! Set up bitmap and data field

 numpts=MAXPTS

 allocate(LB(numpts))

 allocate(F(numpts))

 NREC=NNNREC !Max no of records

 do j=0,NREC-1

 ! Set GRIB1 field identification values to encode

 KPDS=0

 KGDS=0

 read(11,*)KPDS

 read(11,*)KGDS

! KPDS(1:25)=PDS

! KGDS(1:25)=GDS

 read(12,*)F

32

 LB=.true.

 ! pack and write field to file

 CALL PUTGB(LUGB,numpts,KPDS,KGDS,LB,F,iret)

 firstval=F(1)

 lastval=F(KF)

 fldmax=maxval(F)

 fldmin=minval(F)

! print*,firstval,lastval,fldmax,fldmin,iret

 print*,'--------------KPDS----------------------'

 print*,KPDS

 print*,'--------------KGDS----------------------'

 print*,KGDS

! print*,'---------------F---------------------'

! print 333,F

 enddo

 ! Close file ...

 call baclose(LUGB,iret)

333 FORMAT(1x,10(F14.7,1x))

334 FORMAT(1x,10(I8,1x))

 stop

 end

‘encgrblsm.f’ FORTRAN sample program for GRIB conversion with masking.

!!!! ENCGRB: Program for encoding a grib1 file. The compilation command is

below;

!!!!xlf -q64 -qrealsize=8 -qstrict -L/gpfs1/home/exp/gfs/nwprod/lib -l w3_d -l

bacio_4 -lsp_d encgrb.f -o encgrb.x

!!!!

 integer,parameter :: MAXPTS=NX*NY !lat-lon grid

 integer,dimension(200) :: KPDS,KGDS

 logical*1,allocatable :: LB(:) ! bitmap

 real,allocatable :: F(:) ! grid point data values

 integer,dimension(25) :: PDS,GDS

! DATA PDS(1:10)/7,96,255,128,7, 100,10,12,3,4/ !T574

Gaussian grid

! DATA PDS(11:25)/0,0,1,24,0, 10,0,1,2,0, 21,2,0,0,32/ !T574

Gaussian grid

! DATA GDS(1:10)/4,1760,880,89844,0, 128,-89844,-205,205,440/!T574

Gaussian grid

! DATA GDS(11:25)/0,0,0,0,0, 0,0,0,0,255, 0,0,0,0,0/ !T574

Gaussian grid

 DATA PDS(1:10)/7,96,255,128,7, 100,10,12,3,4/ !lat-lon

grid

 DATA PDS(11:25)/0,0,1,24,0, 10,0,1,2,0, 21,2,0,0,32/ !lat-lon

grid

33

 DATA GDS(1:10)/0,13,13,26000,76000, 128,29000,79000,250,250/!lat-lon

grid

 DATA GDS(11:25)/64,0,0,0,0, 0,0,0,0,255, 0,0,0,0,0/ !lat-lon

grid

 lugb=50

 ! Open GRIB1 file

 call baopenw(LUGB,"output.grb",iret)

 open(11,file='header.txt',form='formatted',status='old')

 open(12,file='data.txt',form='formatted',status='old')

 ! Set up bitmap and data field

 numpts=MAXPTS

 allocate(LB(numpts))

 allocate(F(numpts))

 NREC=NNNREC !Max no of records

 do j=0,NREC-1

 ! Set GRIB1 field identification values to encode

 KPDS=0

 KGDS=0

 read(11,*)KPDS

 read(11,*)KGDS

! KPDS(1:25)=PDS

! KGDS(1:25)=GDS

 read(12,*)F

 LB=.true.

 do iii=1,MAXPTS

 if(abs(F(iii)).lt.1.0)then

 if(F(iii).ge.0.5)then

 F(iii)=1.0

 elseif(F(iii).le.-0.5)then

 F(iii)=-1.0

 else

 F(iii)=0.0

 endif

 endif

 enddo

 ! pack and write field to file

 CALL PUTGB(LUGB,numpts,KPDS,KGDS,LB,F,iret)

 firstval=F(1)

 lastval=F(KF)

 fldmax=maxval(F)

 fldmin=minval(F)

! print*,firstval,lastval,fldmax,fldmin,iret

 print*,'--------------KPDS----------------------'

 print*,KPDS

 print*,'--------------KGDS----------------------'

 print*,KGDS

! print*,'---------------F---------------------'

! print 333,F

34

 enddo

 ! Close file ...

 call baclose(LUGB,iret)

333 FORMAT(1x,10(F14.7,1x))

334 FORMAT(1x,10(I8,1x))

 stop

 end

35

APPENDIX – IV

The template ‘gribheader.txt’ for PDS/GDS parameters set for NCEP GRIB table and

regular latitude-longitude grid.

 29 96 255 128 GC LTY LEV YY MM DD 0 0 1 T1 T2 AC 0 1 2 0 21 DS 0 0 32 0 0

0

0

0

0

0

 0 NX NY YS XS 128 YE XE XI YI 64 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

36

APPENDIX - V

‘umstashcode.sh’ script which maps the STASH code and GRIB code.

UMSTASHCODE VER 1 #### SAJI MOHANDAS/NCMRWF/AUG2013 ### GRIB-STASH

MAPPING

INPUT: VARIABLE NAME ARGUEMENT (Fully lower case or upper case)

OUTPUT: (1) GRIB NAME, (2) GRADS NAME, (3) NETCDF NAME, (4) STASH CODE

UMNAME=$1

if [$UMNAME = "apcp"] || [$UMNAME = "APCP"] ; then echo

APCP TP tot_precip 5226; fi

if [$UMNAME = "hgt"] || [$UMNAME = "HGT"] ; then echo

HGT GH ht 16202; fi

if [$UMNAME = "hgtsfc"] || [$UMNAME = "HGTSFC"] ; then echo

HGT GH ht 33; fi

if [$UMNAME = "tsfc"] || [$UMNAME = "TSFC"] ; then echo

TMP TSFC temp 24; fi

if [$UMNAME = "tmp"] || [$UMNAME = "TMP"] ; then echo

TMP TMP temp 16203; fi

if [$UMNAME = "tmax"] || [$UMNAME = "TMAX"] ; then echo

TMAX TMAX temp 3236; fi

if [$UMNAME = "tmin"] || [$UMNAME = "TMIN"] ; then echo

TMIN TMIN temp_1 3236; fi

if [$UMNAME = "ugrd"] || [$UMNAME = "UGRD"] ; then echo

UGRD U u 15243; fi

if [$UMNAME = "vgrd"] || [$UMNAME = "VGRD"] ; then echo

VGRD V v 15244; fi

if [$UMNAME = "u50m"] || [$UMNAME = "U50M"] ; then echo

UGRD U u 15245; fi

if [$UMNAME = "v50m"] || [$UMNAME = "V50M"] ; then echo

VGRD V v 15246; fi

if [$UMNAME = "pres"] || [$UMNAME = "PRES"] ; then echo

PRES P p 409; fi

if [$UMNAME = "prmsl"] || [$UMNAME = "PRMSL"] ; then echo

PRMSL PMSL p 16222; fi

if [$UMNAME = "spfh"] || [$UMNAME = "SPFH"] ; then echo

SPFH Q q 10 ; fi

if [$UMNAME = "rh"] || [$UMNAME = "RH"] ; then echo

RH RH rh 16256; fi

if [$UMNAME = "rh2m"] || [$UMNAME = "RH2M"] ; then echo

RH RH rh 3245; fi

if [$UMNAME = "vvel"] || [$UMNAME = "VVEL"] ; then echo

VVEL VVEL dz_dt 15242; fi

if [$UMNAME = "dpt"] || [$UMNAME = "DPT"] ; then echo

DPT DPT field17 3250; fi

if [$UMNAME = "snod"] || [$UMNAME = "SNOD"] ; then echo

SNOD SD snowdepth 23; fi

37

if [$UMNAME = "land"] || [$UMNAME = "LAND"] ; then echo

LAND LSM landsfc 2; fi

if [$UMNAME = "tcdc"] || [$UMNAME = "TCDC"] ; then echo

T TCC field30 9217; fi

if [$UMNAME = "tcdcr"] || [$UMNAME = "TCDCR"] ; then echo

T TCC field30 9216; fi

if [$UMNAME = "vis"] || [$UMNAME = "VIS"] ; then echo

VIS VIS field25 3247; fi

if [$UMNAME = "visppt"] || [$UMNAME = "VISPPT"] ; then echo

VIS VIS field25 3281; fi

if [$UMNAME = "soilm"] || [$UMNAME = "SOILM"] ; then echo

SOILM SOILM sm 8223; fi

if [$UMNAME = "tsoil"] || [$UMNAME = "TSOIL"] ; then echo

TSOIL TSOIL soiltemp 3238; fi

if [$UMNAME = "u10m"] || [$UMNAME = "U10M"] ; then echo

UGRD U u 3209; fi

if [$UMNAME = "v10m"] || [$UMNAME = "V10M"] ; then echo

VGRD V v 3210; fi

if [$UMNAME = "t2m"] || [$UMNAME = "T2M"] ; then echo

TMP TMP temp 3236; fi

if [$UMNAME = "q2m"] || [$UMNAME = "Q2M"] ; then echo

SPFH Q q 3237; fi

if [$UMNAME = "cape"] || [$UMNAME = "CAPE"] ; then echo

CAPE CAPE field1482 5233; fi

if [$UMNAME = "cin"] || [$UMNAME = "CIN"] ; then echo

CIN CIN field1629 5234; fi

if [$UMNAME = "vl"] || [$UMNAME = "VL"] ; then echo

L L field1090 9202; fi

if [$UMNAME = "l"] || [$UMNAME = "L"] ; then echo

L L field33 9203; fi

if [$UMNAME = "mcdc"] || [$UMNAME = "MCDC"] ; then echo

MCDC MCDC field32 9204; fi

if [$UMNAME = "hcdc"] || [$UMNAME = "HCDC"] ; then echo

HCDC HCDC field31 9205; fi

if [$UMNAME = "hpbl"] || [$UMNAME = "HPBL"] ; then echo

HPBL HPBL blht 25; fi

if [$UMNAME = "sfcr"] || [$UMNAME = "SFCR"] ; then echo

SFCR SFCR field324 3026; fi

if [$UMNAME = "weasd"] || [$UMNAME = "WEASD"] ; then echo

WEASD WEASD snowdepth 23; fi

if [$UMNAME = "lsmask"] || [$UMNAME = "LSMASK"] ; then echo

LAND LSM lsm 30; fi

if [$UMNAME = "fog2m"] || [$UMNAME = "FOG2M"] ; then echo

L L cldamount 3248; fi

if [$UMNAME = "icec"] || [$UMNAME = "ICEC"] ; then echo

ICEC ICECONC iceconc 31; fi

if [$UMNAME = "icetk"] || [$UMNAME = "ICECTK"] ; then echo

ICETK ICEDEPTH icedepth 32; fi

if [$UMNAME = "dswrf"] || [$UMNAME = "DSWRF"] ; then echo

DSWRF SOLAR field203 1235; fi

if [$UMNAME = "ndswrf"] || [$UMNAME = "NDSWRF"] ; then echo

DSWRF SOLAR solar 1202; fi

38

if [$UMNAME = "uswrftoa"] || [$UMNAME = "USWRFTOA"] ; then echo

USWRF SOLAR field201 1205; fi

if [$UMNAME = "dswrftoa"] || [$UMNAME = "DSWRFTOA"] ; then echo

DSWRF SOLAR field200 1207; fi

if [$UMNAME = "rdswrf"] || [$UMNAME = "RDSWRF"] ; then echo

DSWRF SOLAR solar 1215; fi

if [$UMNAME = "fdswrf"] || [$UMNAME = "FDSWRF"] ; then echo

DSWRF SOLAR solar 1216; fi

if [$UMNAME = "dlwrf"] || [$UMNAME = "DLWRF"] ; then echo

DLWRF OLR ilr 2207; fi

if [$UMNAME = "ndlwrf"] || [$UMNAME = "NDLWRF"] ; then echo

DLWRF OLR longwave 2201; fi

if [$UMNAME = "ulwrftoa"] || [$UMNAME = "ULWRFTOA"] ; then echo

ULWRF OLR olr 2205; fi

if [$UMNAME = "tcdm"] || [$UMNAME = "TCDM"] ; then echo

PWAT PWAT unspecified 30403; fi

if [$UMNAME = "tcwm"] || [$UMNAME = "TCWM"] ; then echo

PWAT PWAT unspecified 30404; fi

if [$UMNAME = "tcql"] || [$UMNAME = "TCQL"] ; then echo

PWAT PWAT unspecified 30405; fi

if [$UMNAME = "tcqf"] || [$UMNAME = "TCQF"] ; then echo

PWAT PWAT unspecified 30406; fi

if [$UMNAME = "shtfl"] || [$UMNAME = "SHTFL"] ; then echo

SHTFL SHTFL sh 3217; fi

if [$UMNAME = "lhtfl"] || [$UMNAME = "LHTFL"] ; then echo

LHTFL LHTFL lh 3234; fi

39

APPENDIX – VI

File ‘paramtable.permanent’ containing the NCEP GRIB codes, short sname and long name.

000 - Reserved -

001 PRES Pressure Pa

002 PRMSL Pressure_reduced_to_MSL Pa

003 PTEND Pressure_tendency Pa/s

004 PVORT Potential_vorticity Km2kg-1s-1

005 ICAHT ICAO_Standard_Atmosphere_Reference_Height m

006 GP Geopotential m2/s2

007 HGT Geopotential_height gpm

008 DIST Geometric_height m

009 HSTDV Standard_deviation_of_height m

010 TOZNE Total_ozone Dobson

011 TMP Temperature K

012 VTMP Virtual_temperature K

013 POT Potential_temperature K

014 EPOT Equivalent_potential_temperature K

015 TMAX Maximum_temperature K

016 TMIN Minimum_temperature K

017 DPT Dew_point_temperature K

018 DEPR Dew_point_depression K

019 LAPR Lapse_rate K/m

020 VIS Visibility m

021 RDSP1 Radar_Spectra_(1) -

022 RDSP2 Radar_Spectra_(2) -

023 RDSP3 Radar_Spectra_(3) -

024 PLI Parcel_lifted_index_(to_500_hPa) K

025 TMPA Temperature_anomaly K

026 PRESA Pressure_anomaly Pa

027 GPA Geopotential_height_anomaly gpm

028 - Wave_Spectra (1)

029 - Wave_Spectra (2)

030 - Wave_Spectra (3)

031 WDIR Wind_direction_(from_which_blowing) degtrue

032 WIND Wind_speed m/s

033 UGRD u-component_of_wind m/s

034 VGRD v-component_of_wind m/s

035 STRM Stream_function m2/s

036 VPOT Velocity_potential m2/s

037 MNTSF Montgomery_stream_function m2/s2

038 SGCVV Sigma_coordinate_vertical_velocity /s

039 VVEL Vertical_velocity_(pressure) Pa/s

040 DZDT Vertical_velocity_(geometric) m/s

041 ABSV Absolute_vorticity /s

042 ABSD Absolute_divergence /s

043 RELV Relative_vorticity /s

40

044 RELD Relative_divergence /s

045 VUCSH Vertical_u-component_shear /s

046 VVCSH Vertical_v-component_shear /s

047 DIRC Direction_of_current Degreetrue

048 SPC Speed_of_current m/s

049 UOGRD u-component_of_current m/s

050 VOGRD v-component_of_current m/s

051 SPFH Specific_humidity kg/kg

052 RH Relative_humidity %

053 MIXR Humidity_mixing_ratio kg/kg

054 PWAT Precipitable_water kg/m2

055 VAPP Vapor_pressure Pa

056 SATD Saturation_deficit Pa

057 EVP Evaporation kg/m2

058 CICE Cloud_Ice kg/m2

059 PRATE Precipitation_rate kg/m2/s

060 TSTM Thunderstorm_probability %

061 APCP Total_precipitation kg/m2

062 NCPCP Large_scale_precipitation_(non-conv.) kg/m2

063 ACPCP Convective_precipitation kg/m2

064 SRWEQ Snowfall_rate_water_equivalent kg/m2/s

065 WEASD Water_equiv._of_accum._snow_depth kg/m2

066 SNOD Snow_depth m

067 MIXHT Mixed_layer_depth m

068 TTHDP Transient_thermocline_depth m

069 MTHD Main_thermocline_depth m

070 MTHA Main_thermocline_anomaly m

071 T Total_cloud_cover %

072 CDCON Convective_cloud_cover %

073 L Low_cloud_cover %

074 MCDC Medium_cloud_cover %

075 HCDC High_cloud_cover %

076 CWAT Cloud_water kg/m2

077 BLI Best_lifted_index_(to_500_hPa) K

078 SNOC Convective_snow kg/m2

079 SNOL Large_scale_snow kg/m2

080 WTMP Water_Temperature K

081 LAND Land_cover_(land=1,_sea=0)_(see_note) proportion

082 DSLM Deviation_of_sea_level_from_mean m

083 SFCR Surface_roughness m

084 ALBDO Albedo %

085 TSOIL Soil_temperature K

086 SOILM Soil_moisture_content kg/m2

087 VEG Vegetation %

088 SALTY Salinity kg/kg

089 DEN Density kg/m3

090 WATR Water_runoff kg/m2

091 ICEC Ice_cover_(ice=1,_no_ice=0)_(See_Note) proportion

092 ICETK Ice_thickness m

093 DICED Direction_of_ice_drift deg.true

094 SICED Speed_of_ice_drift m/s

095 UICE u-component_of_ice_drift m/s

41

096 VICE v-component_of_ice_drift m/s

097 ICEG Ice_growth_rate m/s

098 ICED Ice_divergence /s

099 SNOM Snow_melt kg/m2

100 HTSGW Significant_height_of_combined_wind_waves_and_swell m

101 WVDIR Direction_of_wind_waves_(from_which) Degreetrue

102 WVHGT Significant_height_of_wind_waves m

103 WVPER Mean_period_of_wind_waves s

104 SWDIR Direction_of_swell_waves Degreetrue

105 SWELL Significant_height_of_swell_waves m

106 SWPER Mean_period_of_swell_waves s

107 DIRPW Primary_wave_direction Degreetrue

108 PERPW Primary_wave_mean_period s

109 DIRSW Secondary_wave_direction Degreetrue

110 PERSW Secondary_wave_mean_period s

111 NSWRS Net_short-wave_radiation_flux_(surface) W/m2

112 NLWRS Net_long_wave_radiation_flux_(surface) W/m2

113 NSWRT Net_short-wave_radiation_flux_(top_of_atmosphere) W/m2

114 NLWRT Net_long_wave_radiation_flux_(top_of_atmosphere) W/m2

115 LWAVR Long_wave_radiation_flux W/m2

116 SWAVR Short_wave_radiation_flux W/m2

117 GRAD Global_radiation_flux W/m2

118 BRTMP Brightness_temperature K

119 LWRAD Radiance_(with_respect_to_wave_number) W/m/sr

120 SWRAD Radiance_(with_respect_to_wave_length) W/m3/sr

121 LHTFL Latent_heat_net_flux W/m2

122 SHTFL Sensible_heat_net_flux W/m2

123 BLYDP Boundary_layer_dissipation W/m2

124 UFLX Momentum_flux,_u_component N/m2

125 VFLX Momentum_flux,_v_component N/m2

126 WMIXE Wind_mixing_energy J

127 IMGD Image_data -

128 MSLSA Mean_Sea_Level_Pressure_(Standard_Atmosphere_Reduction) Pa

129 MSLMA Mean_Sea_Level_Pressure_(MAPS_System_Reduction) Pa

130 MSLET Mean_Sea_Level_Pressure_(NAM_Model_Reduction) Pa

131 LFTX Surface_lifted_index K

132 4LFTX Best_(4_layer)_lifted_index K

133 KX K_index K

134 SX Sweat_index K

135 MCONV Horizontal_moisture_divergence kg/kg/s

136 VWSH Vertical_speed_shear 1/s

137 TSLSA 3-hr_pressure_tendency_Std._Atmos._Reduction Pa/s

138 BVF2 Brunt-Vaisala_frequency_(squared) 1/s2

139 PVMW Potential_vorticity_(density_weighted) 1/s/m

140 CRAIN Categorical_rain_(yes=1;_no=0) non-dim

141 CFRZR Categorical_freezing_rain_(yes=1;_no=0) non-dim

142 CICEP Categorical_ice_pellets_(yes=1;_no=0) non-dim

143 CSNOW Categorical_snow_(yes=1;_no=0) non-dim

144 SOILW Volumetric_soil_moisture_content fraction

145 PEVPR Potential_evaporation_rate W/m**2

146 CWORK Cloud_workfunction J/kg

147 U-GWD Zonal_flux_of_gravity_wave_stress N/m**2

42

148 V-GWD Meridional_flux_of_gravity_wave_stress N/m**2

149 PVORT Potential_vorticity m**2/s/kg

150 COVMZ Covariance_between_meridional_and_zonal_components_of_the_wind

m2/s2

151 COVTZ Covariance_between_temperature_and_zonal_components_of_the_wind

K*m/s

152

Covariance_between_temperature_and_meridional_components_of_the_wind K*m/s

COVTM

153 CLWMR Cloud_water Kg/kg

154 O3MR Ozone_mixing_ratio Kg/kg

155 GFLUX Ground_Heat_Flux W/m2

156 CIN Convective_inhibition J/kg

157 CAPE Convective_Available_Potential_Energy J/kg

158 TKE Turbulent_Kinetic_Energy J/kg

159 CONDP Condensation_pressure_of_parcel_lifted_from_indicated_surface Pa

160 CSUSF Clear_Sky_Upward_Solar_Flux W/m2

161 CSDSF Clear_Sky_Downward_Solar_Flux W/m2

162 CSULF Clear_Sky_upward_long_wave_flux W/m2

163 CSDLF Clear_Sky_downward_long_wave_flux W/m2

164 CFNSF Cloud_forcing_net_solar_flux W/m2

165 CFNLF Cloud_forcing_net_long_wave_flux W/m2

166 VBDSF Visible_beam_downward_solar_flux W/m2

167 VDDSF Visible_diffuse_downward_solar_flux W/m2

168 NBDSF Near_IR_beam_downward_solar_flux W/m2

169 NDDSF Near_IR_diffuse_downward_solar_flux W/m2

170 RWMR Rain_water_mixing_ratio Kg/Kg

171 SNMR Snow_mixing_ratio Kg/Kg

172 M Momentum_flux N/m2

173 LMH Mass_point_model_surface non-dim

174 LMV Velocity_point_model_surface non-dim

175 MLYNO Model_layer_number_(from_bottom_up) non-dim

176 NLAT latitude_(-90_to_+90) deg

177 ELON east_longitude_(0-360) deg

178 ICMR Ice_mixing_ratio Kg/Kg

179 GRMR Graupel_mixing_ratio Kg/Kg

180 GUST Surface_wind_gust m/s

181 LPSX x-gradient_of_log_pressure 1/m

182 LPSY y-gradient_of_log_pressure 1/m

183 HGTX x-gradient_of_height m/m

184 HGTY y-gradient_of_height m/m

185 TPFI Turbulence_Potential_Forecast_Index non-dim

186 TIPD Total_Icing_Potential_Diagnostic non-dim

187 LTNG Lightning non-dim

188 RDRIP Rate_of_water_dropping_from_canopy_to_ground -

189 VPTMP Virtual_potential_temperature K

190 HLCY Storm_relative_helicity m2/s2

191 PROB Probability_from_ensemble numeric

192 PROBN

Probability_from_ensemble_normalized_with_respect_to_climate_expectancy

numeric

193 POP Probability_of_precipitation %

43

194 CPOFP Percent_of_frozen_precipitation %

195 CPOZP Probability_of_freezing_precipitation %

196 USTM u-component_of_storm_motion m/s

197 VSTM v-component_of_storm_motion m/s

198 NCIP Number_concentration_for_ice_particles -

199 EVBS Direct_evaporation_from_bare_soil W/m2

200 EVCW Canopy_water_evaporation W/m2

201 ICWAT Ice-free_water_surface %

202 CWDI Convective_weather_detection_index non-dim

203 VAFTD VAFTAD log10(kg/m3)

204 DSWRF downward_short_wave_rad._flux W/m2

205 DLWRF downward_long_wave_rad._flux W/m2

206 UVI Ultra_violet_index_(1_hour_integration_centered_at_solar_noon) J/m2

207 MSTAV Moisture_availability %

208 SFEXC Exchange_coefficient (kg/m3)(m/s)

209 MIXLY No._of_mixed_layers_next_to_surface integer

210 TRANS Transpiration W/m2

211 USWRF upward_short_wave_rad._flux W/m2

212 ULWRF upward_long_wave_rad._flux W/m2

213 CDLYR Amount_of_non-convective_cloud %

214 CPRAT Convective_Precipitation_rate kg/m2/s

215 TTDIA Temperature_tendency_by_all_physics K/s

216 TTRAD Temperature_tendency_by_all_radiation K/s

217 TTPHY Temperature_tendency_by_non-radiation_physics K/s

218 PREIX precip.index(0.0-1.00) fraction

219 TSD1D Std._dev._of_IR_T_over_1x1_deg_area K

220 NLGSP Natural_log_of_surface_pressure ln(kPa)

221 HPBL Planetary_boundary_layer_height m

222 5WAVH 5-wave_geopotential_height gpm

223 CNWAT Plant_canopy_surface_water kg/m2

224 (0-9) Soil_type_(as_in_Zobler) Integer

225 (0-13) Vegitation_type_(as_in_SiB) Integer

226 BMIXL Blackadar's_mixing_length_scale m

227 AMIXL Asymptotic_mixing_length_scale m

228 PEVAP Potential_evaporation kg/m2

229 SNOHF Snow_phase-change_heat_flux W/m2

230 5WAVA 5-wave_geopotential_height_anomaly gpm

231 MFLUX Convective_cloud_mass_flux Pa/s

232 DTRF Downward_total_radiation_flux W/m2

233 UTRF Upward_total_radiation_flux W/m2

234 BGRUN Baseflow-groundwater_runoff kg/m2

235 SSRUN Storm_surface_runoff kg/m2

236 SIPD Supercooled_Large_Droplet_(SLD)_Icing_Potential_Diagnostic

Numeric)

237 03TOT Total_ozone Kg/m2

238 SNOWC Snow_cover percent

239 SNOT Snow_temperature K

240 COVTW Covariance_between_temperature_and_vertical_component_of_the_wind

K*m/s

241 LRGHR Large_scale_condensate_heat_rate K/s

242 CNVHR Deep_convective_heating_rate K/s

243 CNVMR Deep_convective_moistening_rate kg/kg/s

44

244 SHAHR Shallow_convective_heating_rate K/s

245 SHAMR Shallow_convective_moistening_rate kg/kg/s

246 VDFHR Vertical_diffusion_heating_rate K/s

247 VDFUA Vertical_diffusion_zonal_acceleration m/s2

248 VDFVA Vertical_diffusion_meridional_acceleration m/s2

249 VDFMR Vertical_diffusion_moistening_rate kg/kg/s

250 SWHR Solar_radiative_heating_rate K/s

251 LWHR Long_wave_radiative_heating_rate K/s

252 CD Drag_coefficient non-dim

253 FRICV Friction_velocity m/s

254 RI Richardson_number non-dim

255 - Missing -

__

45

Appendix – VII

List of field variables with STASH code and GRIB code as incorporated in

umstashcode.sh along with most likely value of NCEP GRlB level codes .

Sl.

No.

STASH

Name

STASH

Code

GRIB

code

GRIB

Name

Level

code

Description

1. APCP 5226 061 APCP 1 Total_precipitation kg/m2

2 HGT 16202 007 HGT 100 Geopotential_height gpm

3 HGTSFC 33 007 HGT 1 Orography m

4 TSFC 24 011 TMP 1 Surface Temperature K

5 TMP 16203 011 TMP 100 Temperature K

6 TMIN 3236 011 TMP 1 Maximum temperature K

7 TMAX 3236 011 TMP 1 Minimum temperature K

8 UGRD 15243 033 UGRD 100 u-component_of_wind m/s

9 VGRD 16244 034 VGRD 100 v-component_of_wind m/s

10 U50M 15245 033 UGRD 105 Zonal wind at 50m m/s

11 V50M 15246 034 VGRD 105 Meridional wind at 50m m/s

12 PRES 409 001 PRES 1 Pressure Pa

13 PRMSL 16222 002 PRMSL 102 Pressure_reduced_to_MSL Pa

14 SPFH 10 051 SPFH 100 Specific_humidity kg/kgas1b

15 RH 3245 052 RH 100 Relative_humidity %

16 VVEL 15242 039 VVEL 100 Vertical_velocity_(pressure) Pa/s

17 DPT 3250 017 DPT 1 Dew_point_temperature K

18 SNOD 23 066 SNOD 1 Snow_depth m

19 LAND 2 081 LAND 1 Land_cover_(land=1,_sea=0)

20 TCDC 9217 071 T 200
244

Total_cloud_cover % atmos col (max overlap)
convect-cld layer %

21 TCDCR 9216 071 T 200 Total_cloud_cover % atmos col (random
overlap)

22 VIS 3247 020 VIS 1 Visibility m

23 VISPPT 3281 020 VIS 1 Visibility m

24 TSOIL 3238 085 TSOIL 112 Soil_temperature K

25 U10M 3209 033 UGRD 105 Zonal wind at 10m m/s

46

26 V10M 3210 034 VGRD 105 Meridional wind at 10m m/s

27 T2M 3236 011 TMP 105 Temperature at 2m K

28 Q2M 3237 051 SPFH 105 Specific humidity at 2m Kg/Kg

29 CAPE 5233 157 CAPE 1
116

Convective_Available_Potential_Energy J/kg
mb above gnd J/Kg

30 CIN 5234 156 CIN 1
116

Convective_inhibition J/kg
mb above gnd J/Kg

31 VL 9202 073 L 211 Very low_cloud_cover/bndary-layer cld %

32 L 9203 073 L 214 Low_cloud_cover %

33 MCDC 9204 074 MCDC 224 Mid_cld_layer %

34 HCDC 9205 075 HCDC 234 High_cloud_layer %

35 HPBL 25 221 HPBL 1 Planetary_boundary_layer_height m

36 SFCR 3026 083 SFCR 1 Surface_roughness m

37 WEASD 23 065 WEASD 1 Water_equiv._of_accum.snow_depth kg/m2

38 LSMASK 30 081 LSMASK 1 Land_cover_(land=1,_sea=0) proportion

39 FOG2M 3248 073 L 211 Fog_cover %

40 ICEC 31 091 ICEC 1 Ice_cover_(ice=1,_no_ice=0) proportion

41 ICETK 32 092 ICETK 1 Ice_thickness m

42 DSWRF 1235 204 DSWRF 1 Downward_short_wave_rad.flux(Sur) W/m2

43 NDSWRF 1202 204 DSWRF 1 Net Down_short_wave_rad.flux(Sur) W/m2

44 USWRFTOA 1205 211 USWRF 8 Upward_short_wave_rad.flux(Top) W/m2

45 DSWRFTOA 1207 204 DSWRF 8 Downward_short_wave_rad.flux(Top) W/m2

46 RDSWRF 1215 204 DSWRF 1 Dir.Down_short_wave_rad.flux(Sur) W/m2

47 FDSWRF 1216 204 DSWRF 1 Dif.Down_short_wave_rad.flux(Sur) W/m2

48 DLWRF 2207 205 DLWRF 1 Downward_long_wave_rad.flux(Sur) W/m2

49 NDLWRF 2201 205 DLWRF 1 Net Down_long_wave_rad.flux(Sur) W/m2

50 ULWRFTOA 2205 212 ULWRF 8 Upward_long_wave_rad.flux(Top) W/m2

51 TCDM 30403 054 PWAT 200 Total column Dry Mass Kg/m2

52 TCWM 30404 054 PWAT 200 Total column Wet Mass kg/m2

53 TCQL 30405 054 PWAT 200 Total column cloud liquid mass Kg/m2

54 TCQF 30406 054 PWAT 200 Total column cloud ice mass Kg/m2

55 SHTFL 3217 122 SHTFL 1 Sensible_heat_net_flux W/m2

56 LHTFL 3234 121 LHTFL 1 Latent_heat_net_flux W/m2

